/* * bitops.h: Bit string operations on the ppc */ #ifndef _PPC_BITOPS_H #define _PPC_BITOPS_H #include <asm/byteorder.h> #include <asm-generic/bitops/__ffs.h> /* * Arguably these bit operations don't imply any memory barrier or * SMP ordering, but in fact a lot of drivers expect them to imply * both, since they do on x86 cpus. */ #ifdef CONFIG_SMP #define SMP_WMB "eieio\n" #define SMP_MB "\nsync" #else #define SMP_WMB #define SMP_MB #endif /* CONFIG_SMP */ #define __INLINE_BITOPS 1 #if __INLINE_BITOPS /* * These used to be if'd out here because using : "cc" as a constraint * resulted in errors from egcs. Things may be OK with gcc-2.95. */ static __inline__ void set_bit(int nr, volatile void * addr) { unsigned long old; unsigned long mask = 1 << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); __asm__ __volatile__(SMP_WMB "\ 1: lwarx %0,0,%3\n\ or %0,%0,%2\n\ stwcx. %0,0,%3\n\ bne 1b" SMP_MB : "=&r" (old), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc" ); } static __inline__ void clear_bit(int nr, volatile void *addr) { unsigned long old; unsigned long mask = 1 << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); __asm__ __volatile__(SMP_WMB "\ 1: lwarx %0,0,%3\n\ andc %0,%0,%2\n\ stwcx. %0,0,%3\n\ bne 1b" SMP_MB : "=&r" (old), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc"); } static __inline__ void change_bit(int nr, volatile void *addr) { unsigned long old; unsigned long mask = 1 << (nr & 0x1f); unsigned long *p = ((unsigned long *)addr) + (nr >> 5); __asm__ __volatile__(SMP_WMB "\ 1: lwarx %0,0,%3\n\ xor %0,%0,%2\n\ stwcx. %0,0,%3\n\ bne 1b" SMP_MB : "=&r" (old), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc"); } static __inline__ int test_and_set_bit(int nr, volatile void *addr) { unsigned int old, t; unsigned int mask = 1 << (nr & 0x1f); volatile unsigned int *p = ((volatile unsigned int *)addr) + (nr >> 5); __asm__ __volatile__(SMP_WMB "\ 1: lwarx %0,0,%4\n\ or %1,%0,%3\n\ stwcx. %1,0,%4\n\ bne 1b" SMP_MB : "=&r" (old), "=&r" (t), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc"); return (old & mask) != 0; } static __inline__ int test_and_clear_bit(int nr, volatile void *addr) { unsigned int old, t; unsigned int mask = 1 << (nr & 0x1f); volatile unsigned int *p = ((volatile unsigned int *)addr) + (nr >> 5); __asm__ __volatile__(SMP_WMB "\ 1: lwarx %0,0,%4\n\ andc %1,%0,%3\n\ stwcx. %1,0,%4\n\ bne 1b" SMP_MB : "=&r" (old), "=&r" (t), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc"); return (old & mask) != 0; } static __inline__ int test_and_change_bit(int nr, volatile void *addr) { unsigned int old, t; unsigned int mask = 1 << (nr & 0x1f); volatile unsigned int *p = ((volatile unsigned int *)addr) + (nr >> 5); __asm__ __volatile__(SMP_WMB "\ 1: lwarx %0,0,%4\n\ xor %1,%0,%3\n\ stwcx. %1,0,%4\n\ bne 1b" SMP_MB : "=&r" (old), "=&r" (t), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc"); return (old & mask) != 0; } #endif /* __INLINE_BITOPS */ static __inline__ int test_bit(int nr, __const__ volatile void *addr) { __const__ unsigned int *p = (__const__ unsigned int *) addr; return ((p[nr >> 5] >> (nr & 0x1f)) & 1) != 0; } /* Return the bit position of the most significant 1 bit in a word */ /* - the result is undefined when x == 0 */ static __inline__ int __ilog2(unsigned int x) { int lz; asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x)); return 31 - lz; } static __inline__ int ffz(unsigned int x) { if ((x = ~x) == 0) return 32; return __ilog2(x & -x); } /* * fls: find last (most-significant) bit set. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. * * On powerpc, __ilog2(0) returns -1, but this is not safe in general */ static __inline__ int fls(unsigned int x) { return __ilog2(x) + 1; } #define PLATFORM_FLS /** * fls64 - find last set bit in a 64-bit word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffsll, but returns the position of the most significant set bit. * * fls64(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 64. */ #if BITS_PER_LONG == 32 static inline int fls64(__u64 x) { __u32 h = x >> 32; if (h) return fls(h) + 32; return fls(x); } #elif BITS_PER_LONG == 64 static inline int fls64(__u64 x) { if (x == 0) return 0; return __ilog2(x) + 1; } #else #error BITS_PER_LONG not 32 or 64 #endif #ifdef __KERNEL__ /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static __inline__ int ffs(int x) { return __ilog2(x & -x) + 1; } #define PLATFORM_FFS /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #endif /* __KERNEL__ */ /* * This implementation of find_{first,next}_zero_bit was stolen from * Linus' asm-alpha/bitops.h. */ #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) static __inline__ unsigned long find_next_zero_bit(void * addr, unsigned long size, unsigned long offset) { unsigned int * p = ((unsigned int *) addr) + (offset >> 5); unsigned int result = offset & ~31UL; unsigned int tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *p++; tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (tmp != ~0U) goto found_middle; size -= 32; result += 32; } while (size >= 32) { if ((tmp = *p++) != ~0U) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } #define _EXT2_HAVE_ASM_BITOPS_ #ifdef __KERNEL__ /* * test_and_{set,clear}_bit guarantee atomicity without * disabling interrupts. */ #define ext2_set_bit(nr, addr) test_and_set_bit((nr) ^ 0x18, addr) #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr) ^ 0x18, addr) #else static __inline__ int ext2_set_bit(int nr, void * addr) { int mask; unsigned char *ADDR = (unsigned char *) addr; int oldbit; ADDR += nr >> 3; mask = 1 << (nr & 0x07); oldbit = (*ADDR & mask) ? 1 : 0; *ADDR |= mask; return oldbit; } static __inline__ int ext2_clear_bit(int nr, void * addr) { int mask; unsigned char *ADDR = (unsigned char *) addr; int oldbit; ADDR += nr >> 3; mask = 1 << (nr & 0x07); oldbit = (*ADDR & mask) ? 1 : 0; *ADDR = *ADDR & ~mask; return oldbit; } #endif /* __KERNEL__ */ static __inline__ int ext2_test_bit(int nr, __const__ void * addr) { __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; return (ADDR[nr >> 3] >> (nr & 7)) & 1; } /* * This implementation of ext2_find_{first,next}_zero_bit was stolen from * Linus' asm-alpha/bitops.h and modified for a big-endian machine. */ #define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned int *p = ((unsigned int *) addr) + (offset >> 5); unsigned int result = offset & ~31UL; unsigned int tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = cpu_to_le32p(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (tmp != ~0U) goto found_middle; size -= 32; result += 32; } while (size >= 32) { if ((tmp = cpu_to_le32p(p++)) != ~0U) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = cpu_to_le32p(p); found_first: tmp |= ~0U << size; found_middle: return result + ffz(tmp); } /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) ext2_set_bit(nr,addr) #define minix_set_bit(nr,addr) ((void)ext2_set_bit(nr,addr)) #define minix_test_and_clear_bit(nr,addr) ext2_clear_bit(nr,addr) #define minix_test_bit(nr,addr) ext2_test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size) #endif /* _PPC_BITOPS_H */