// Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // +build #include <algorithm> #include <errno.h> #include <signal.h> #include <stdarg.h> #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include <unistd.h> #include "defs.h" #if defined(__GNUC__) #define SYSCALLAPI #define NORETURN __attribute__((noreturn)) #define ALIGNED(N) __attribute__((aligned(N))) #define PRINTF __attribute__((format(printf, 1, 2))) #else // Assuming windows/cl. #define SYSCALLAPI WINAPI #define NORETURN __declspec(noreturn) #define ALIGNED(N) __declspec(align(N)) #define PRINTF #endif #ifndef GIT_REVISION #define GIT_REVISION "unknown" #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) // uint64 is impossible to printf without using the clumsy and verbose "%" PRId64. // So we define and use uint64. Note: pkg/csource does s/uint64/uint64/. // Also define uint32/16/8 for consistency. typedef unsigned long long uint64; typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; // exit/_exit do not necessary work (e.g. if fuzzer sets seccomp filter that prohibits exit_group). // Use doexit instead. We must redefine exit to something that exists in stdlib, // because some standard libraries contain "using ::exit;", but has different signature. #define exit vsnprintf // Note: zircon max fd is 256. // Some common_OS.h files know about this constant for RLIMIT_NOFILE. const int kMaxFd = 250; const int kMaxThreads = 16; const int kInPipeFd = kMaxFd - 1; // remapped from stdin const int kOutPipeFd = kMaxFd - 2; // remapped from stdout const int kCoverFd = kOutPipeFd - kMaxThreads; const int kMaxArgs = 9; const int kCoverSize = 256 << 10; const int kFailStatus = 67; const int kRetryStatus = 69; const int kErrorStatus = 68; // Logical error (e.g. invalid input program), use as an assert() alternative. NORETURN PRINTF void fail(const char* msg, ...); // Kernel error (e.g. wrong syscall return value). NORETURN PRINTF void error(const char* msg, ...); // Just exit (e.g. due to temporal ENOMEM error). NORETURN PRINTF void exitf(const char* msg, ...); // Print debug output, does not add \n at the end of msg as opposed to the previous functions. PRINTF void debug(const char* msg, ...); void debug_dump_data(const char* data, int length); NORETURN void doexit(int status); static void receive_execute(); static void reply_execute(int status); #if GOOS_akaros static void resend_execute(int fd); #endif #if SYZ_EXECUTOR_USES_FORK_SERVER static void receive_handshake(); static void reply_handshake(); #endif #if SYZ_EXECUTOR_USES_SHMEM const int kMaxOutput = 16 << 20; const int kInFd = 3; const int kOutFd = 4; uint32* output_data; uint32* output_pos; static uint32* write_output(uint32 v); static void write_completed(uint32 completed); static uint32 hash(uint32 a); static bool dedup(uint32 sig); #endif enum sandbox_type { sandbox_none, sandbox_setuid, sandbox_namespace, }; bool flag_debug; bool flag_cover; bool flag_sandbox_privs; sandbox_type flag_sandbox; bool flag_enable_tun; bool flag_enable_net_dev; bool flag_enable_fault_injection; bool flag_collect_cover; bool flag_dedup_cover; bool flag_threaded; bool flag_collide; // If true, then executor should write the comparisons data to fuzzer. bool flag_collect_comps; // Inject fault into flag_fault_nth-th operation in flag_fault_call-th syscall. bool flag_inject_fault; int flag_fault_call; int flag_fault_nth; #define SYZ_EXECUTOR 1 #include "common.h" const int kMaxCommands = 1000; const int kMaxInput = 2 << 20; const uint64 instr_eof = -1; const uint64 instr_copyin = -2; const uint64 instr_copyout = -3; const uint64 arg_const = 0; const uint64 arg_result = 1; const uint64 arg_data = 2; const uint64 arg_csum = 3; const uint64 binary_format_native = 0; const uint64 binary_format_bigendian = 1; const uint64 binary_format_strdec = 2; const uint64 binary_format_strhex = 3; const uint64 binary_format_stroct = 4; const uint64 no_copyout = -1; int running; uint32 completed; bool collide; bool is_kernel_64_bit = true; ALIGNED(64 << 10) char input_data[kMaxInput]; // Checksum kinds. const uint64 arg_csum_inet = 0; // Checksum chunk kinds. const uint64 arg_csum_chunk_data = 0; const uint64 arg_csum_chunk_const = 1; typedef long(SYSCALLAPI* syscall_t)(long, long, long, long, long, long, long, long, long); struct call_t { const char* name; int sys_nr; syscall_t call; }; struct cover_t { int fd; uint32 size; char* data; char* data_end; }; struct thread_t { int id; bool created; event_t ready; event_t done; uint64* copyout_pos; uint64 copyout_index; bool colliding; bool executing; int call_index; int call_num; int num_args; long args[kMaxArgs]; long res; uint32 reserrno; bool fault_injected; cover_t cov; }; static thread_t threads[kMaxThreads]; static thread_t* last_scheduled; struct res_t { bool executed; uint64 val; }; res_t results[kMaxCommands]; const uint64 kInMagic = 0xbadc0ffeebadface; const uint32 kOutMagic = 0xbadf00d; struct handshake_req { uint64 magic; uint64 flags; // env flags uint64 pid; }; struct handshake_reply { uint32 magic; }; struct execute_req { uint64 magic; uint64 env_flags; uint64 exec_flags; uint64 pid; uint64 fault_call; uint64 fault_nth; uint64 prog_size; }; struct execute_reply { uint32 magic; uint32 done; uint32 status; }; // call_reply.flags const uint32 call_flag_executed = 1 << 0; const uint32 call_flag_finished = 1 << 1; const uint32 call_flag_blocked = 1 << 2; const uint32 call_flag_fault_injected = 1 << 3; struct call_reply { execute_reply header; uint32 call_index; uint32 call_num; uint32 reserrno; uint32 flags; uint32 signal_size; uint32 cover_size; uint32 comps_size; // signal/cover/comps follow }; enum { KCOV_CMP_CONST = 1, KCOV_CMP_SIZE1 = 0, KCOV_CMP_SIZE2 = 2, KCOV_CMP_SIZE4 = 4, KCOV_CMP_SIZE8 = 6, KCOV_CMP_SIZE_MASK = 6, }; struct kcov_comparison_t { // Note: comparisons are always 64-bits regardless of kernel bitness. uint64 type; uint64 arg1; uint64 arg2; uint64 pc; bool ignore() const; void write(); bool operator==(const struct kcov_comparison_t& other) const; bool operator<(const struct kcov_comparison_t& other) const; }; static thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos); static void handle_completion(thread_t* th); static void copyout_call_results(thread_t* th); static void write_call_output(thread_t* th, bool finished); static void execute_call(thread_t* th); static void thread_create(thread_t* th, int id); static void* worker_thread(void* arg); static uint64 read_input(uint64** input_posp, bool peek = false); static uint64 read_arg(uint64** input_posp); static uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf, uint64* bf_off_p, uint64* bf_len_p); static uint64 read_result(uint64** input_posp); static void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len); static bool copyout(char* addr, uint64 size, uint64* res); static void setup_control_pipes(); #include "syscalls.h" #if GOOS_linux #include "executor_linux.h" #elif GOOS_fuchsia #include "executor_fuchsia.h" #elif GOOS_akaros #include "executor_akaros.h" #elif GOOS_freebsd || GOOS_netbsd #include "executor_bsd.h" #elif GOOS_windows #include "executor_windows.h" #elif GOOS_test #include "executor_test.h" #else #error "unknown OS" #endif #include "test.h" int main(int argc, char** argv) { if (argc == 2 && strcmp(argv[1], "version") == 0) { puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION); return 0; } if (argc == 2 && strcmp(argv[1], "test") == 0) return run_tests(); os_init(argc, argv, (void*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE); #if SYZ_EXECUTOR_USES_SHMEM if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0]) fail("mmap of input file failed"); // The output region is the only thing in executor process for which consistency matters. // If it is corrupted ipc package will fail to parse its contents and panic. // But fuzzer constantly invents new ways of how to currupt the region, // so we map the region at a (hopefully) hard to guess address with random offset, // surrounded by unmapped pages. // The address chosen must also work on 32-bit kernels with 1GB user address space. void* preferred = (void*)(0x1b2bc20000ull + (1 << 20) * (getpid() % 128)); output_data = (uint32*)mmap(preferred, kMaxOutput, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0); if (output_data != preferred) fail("mmap of output file failed"); // Prevent test programs to mess with these fds. // Due to races in collider mode, a program can e.g. ftruncate one of these fds, // which will cause fuzzer to crash. close(kInFd); close(kOutFd); #endif use_temporary_dir(); install_segv_handler(); setup_control_pipes(); #if SYZ_EXECUTOR_USES_FORK_SERVER receive_handshake(); #else receive_execute(); #endif if (flag_cover) { for (int i = 0; i < kMaxThreads; i++) { threads[i].cov.fd = kCoverFd + i; cover_open(&threads[i].cov); } } int status = 0; switch (flag_sandbox) { case sandbox_none: status = do_sandbox_none(); break; case sandbox_setuid: status = do_sandbox_setuid(); break; case sandbox_namespace: status = do_sandbox_namespace(); break; default: fail("unknown sandbox type"); } #if SYZ_EXECUTOR_USES_FORK_SERVER // Other statuses happen when fuzzer processes manages to kill loop. if (status != kFailStatus && status != kErrorStatus) status = kRetryStatus; // If an external sandbox process wraps executor, the out pipe will be closed // before the sandbox process exits this will make ipc package kill the sandbox. // As the result sandbox process will exit with exit status 9 instead of the executor // exit status (notably kRetryStatus). Consequently, ipc will treat it as hard // failure rather than a temporal failure. So we duplicate the exit status on the pipe. reply_execute(status); errno = 0; if (status == kFailStatus) fail("loop failed"); if (status == kErrorStatus) error("loop errored"); // Loop can be killed by a test process with e.g.: // ptrace(PTRACE_SEIZE, 1, 0, 0x100040) // This is unfortunate, but I don't have a better solution than ignoring it for now. exitf("loop exited with status %d", status); // Unreachable. return 1; #else reply_execute(status); return status; #endif } void setup_control_pipes() { if (dup2(0, kInPipeFd) < 0) fail("dup2(0, kInPipeFd) failed"); if (dup2(1, kOutPipeFd) < 0) fail("dup2(1, kOutPipeFd) failed"); if (dup2(2, 1) < 0) fail("dup2(2, 1) failed"); // We used to close(0), but now we dup stderr to stdin to keep fd numbers // stable across executor and C programs generated by pkg/csource. if (dup2(2, 0) < 0) fail("dup2(2, 0) failed"); } void parse_env_flags(uint64 flags) { flag_debug = flags & (1 << 0); flag_cover = flags & (1 << 1); flag_sandbox = sandbox_none; if (flags & (1 << 2)) flag_sandbox = sandbox_setuid; else if (flags & (1 << 3)) flag_sandbox = sandbox_namespace; flag_enable_tun = flags & (1 << 4); flag_enable_net_dev = flags & (1 << 5); flag_enable_fault_injection = flags & (1 << 6); } #if SYZ_EXECUTOR_USES_FORK_SERVER void receive_handshake() { handshake_req req = {}; int n = read(kInPipeFd, &req, sizeof(req)); if (n != sizeof(req)) fail("handshake read failed: %d", n); if (req.magic != kInMagic) fail("bad handshake magic 0x%llx", req.magic); parse_env_flags(req.flags); procid = req.pid; } void reply_handshake() { handshake_reply reply = {}; reply.magic = kOutMagic; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } #endif static execute_req last_execute_req; void receive_execute() { execute_req& req = last_execute_req; if (read(kInPipeFd, &req, sizeof(req)) != (ssize_t)sizeof(req)) fail("control pipe read failed"); if (req.magic != kInMagic) fail("bad execute request magic 0x%llx", req.magic); if (req.prog_size > kMaxInput) fail("bad execute prog size 0x%llx", req.prog_size); parse_env_flags(req.env_flags); procid = req.pid; flag_collect_cover = req.exec_flags & (1 << 0); flag_dedup_cover = req.exec_flags & (1 << 1); flag_inject_fault = req.exec_flags & (1 << 2); flag_collect_comps = req.exec_flags & (1 << 3); flag_threaded = req.exec_flags & (1 << 4); flag_collide = req.exec_flags & (1 << 5); flag_fault_call = req.fault_call; flag_fault_nth = req.fault_nth; if (!flag_threaded) flag_collide = false; debug("exec opts: pid=%llu threaded=%d collide=%d cover=%d comps=%d dedup=%d fault=%d/%d/%d prog=%llu\n", procid, flag_threaded, flag_collide, flag_collect_cover, flag_collect_comps, flag_dedup_cover, flag_inject_fault, flag_fault_call, flag_fault_nth, req.prog_size); if (SYZ_EXECUTOR_USES_SHMEM) { if (req.prog_size) fail("need_prog: no program"); return; } if (req.prog_size == 0) fail("need_prog: no program"); uint64 pos = 0; for (;;) { ssize_t rv = read(kInPipeFd, input_data + pos, sizeof(input_data) - pos); if (rv < 0) fail("read failed"); pos += rv; if (rv == 0 || pos >= req.prog_size) break; } if (pos != req.prog_size) fail("bad input size %lld, want %lld", pos, req.prog_size); } #if GOOS_akaros void resend_execute(int fd) { execute_req& req = last_execute_req; if (write(fd, &req, sizeof(req)) != sizeof(req)) fail("child pipe header write failed"); if (write(fd, input_data, req.prog_size) != (ssize_t)req.prog_size) fail("child pipe program write failed"); } #endif void reply_execute(int status) { execute_reply reply = {}; reply.magic = kOutMagic; reply.done = true; reply.status = status; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } // execute_one executes program stored in input_data. void execute_one() { // Duplicate global collide variable on stack. // Fuzzer once come up with ioctl(fd, FIONREAD, 0x920000), // where 0x920000 was exactly collide address, so every iteration reset collide to 0. bool colliding = false; #if SYZ_EXECUTOR_USES_SHMEM output_pos = output_data; write_output(0); // Number of executed syscalls (updated later). #endif uint64 start = current_time_ms(); retry: uint64* input_pos = (uint64*)input_data; if (flag_cover && !colliding && !flag_threaded) cover_enable(&threads[0].cov, flag_collect_comps); int call_index = 0; for (;;) { uint64 call_num = read_input(&input_pos); if (call_num == instr_eof) break; if (call_num == instr_copyin) { char* addr = (char*)read_input(&input_pos); uint64 typ = read_input(&input_pos); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 arg = read_const_arg(&input_pos, &size, &bf, &bf_off, &bf_len); copyin(addr, arg, size, bf, bf_off, bf_len); break; } case arg_result: { uint64 meta = read_input(&input_pos); uint64 size = meta & 0xff; uint64 bf = meta >> 8; uint64 val = read_result(&input_pos); copyin(addr, val, size, bf, 0, 0); break; } case arg_data: { uint64 size = read_input(&input_pos); NONFAILING(memcpy(addr, input_pos, size)); // Read out the data. for (uint64 i = 0; i < (size + 7) / 8; i++) read_input(&input_pos); break; } case arg_csum: { debug("checksum found at %p\n", addr); uint64 size = read_input(&input_pos); char* csum_addr = addr; uint64 csum_kind = read_input(&input_pos); switch (csum_kind) { case arg_csum_inet: { if (size != 2) fail("inet checksum must be 2 bytes, not %llu", size); debug("calculating checksum for %p\n", csum_addr); struct csum_inet csum; csum_inet_init(&csum); uint64 chunks_num = read_input(&input_pos); uint64 chunk; for (chunk = 0; chunk < chunks_num; chunk++) { uint64 chunk_kind = read_input(&input_pos); uint64 chunk_value = read_input(&input_pos); uint64 chunk_size = read_input(&input_pos); switch (chunk_kind) { case arg_csum_chunk_data: debug("#%lld: data chunk, addr: %llx, size: %llu\n", chunk, chunk_value, chunk_size); NONFAILING(csum_inet_update(&csum, (const uint8*)chunk_value, chunk_size)); break; case arg_csum_chunk_const: if (chunk_size != 2 && chunk_size != 4 && chunk_size != 8) { fail("bad checksum const chunk size %lld\n", chunk_size); } // Here we assume that const values come to us big endian. debug("#%lld: const chunk, value: %llx, size: %llu\n", chunk, chunk_value, chunk_size); csum_inet_update(&csum, (const uint8*)&chunk_value, chunk_size); break; default: fail("bad checksum chunk kind %llu", chunk_kind); } } uint16 csum_value = csum_inet_digest(&csum); debug("writing inet checksum %hx to %p\n", csum_value, csum_addr); copyin(csum_addr, csum_value, 2, binary_format_native, 0, 0); break; } default: fail("bad checksum kind %llu", csum_kind); } break; } default: fail("bad argument type %llu", typ); } continue; } if (call_num == instr_copyout) { read_input(&input_pos); // index read_input(&input_pos); // addr read_input(&input_pos); // size // The copyout will happen when/if the call completes. continue; } // Normal syscall. if (call_num >= ARRAY_SIZE(syscalls)) fail("invalid command number %llu", call_num); uint64 copyout_index = read_input(&input_pos); uint64 num_args = read_input(&input_pos); if (num_args > kMaxArgs) fail("command has bad number of arguments %llu", num_args); uint64 args[kMaxArgs] = {}; for (uint64 i = 0; i < num_args; i++) args[i] = read_arg(&input_pos); for (uint64 i = num_args; i < 6; i++) args[i] = 0; thread_t* th = schedule_call(call_index++, call_num, colliding, copyout_index, num_args, args, input_pos); if (colliding && (call_index % 2) == 0) { // Don't wait for every other call. // We already have results from the previous execution. } else if (flag_threaded) { // Wait for call completion. // Note: sys knows about this 25ms timeout when it generates timespec/timeval values. const uint64 timeout_ms = flag_debug ? 1000 : 45; if (event_timedwait(&th->done, timeout_ms)) handle_completion(th); // Check if any of previous calls have completed. for (int i = 0; i < kMaxThreads; i++) { th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } else { // Execute directly. if (th != &threads[0]) fail("using non-main thread in non-thread mode"); event_reset(&th->ready); execute_call(th); event_set(&th->done); handle_completion(th); } } if (!colliding && !collide && running > 0) { // Give unfinished syscalls some additional time. last_scheduled = 0; uint64 wait = 100; uint64 wait_start = current_time_ms(); uint64 wait_end = wait_start + wait; if (wait_end < start + 800) wait_end = start + 800; while (running > 0 && current_time_ms() <= wait_end) { sleep_ms(1); for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } // Write output coverage for unfinished calls. if (running > 0) { for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing) { if (flag_cover) cover_collect(&th->cov); write_call_output(th, false); } } } } if (flag_collide && !flag_inject_fault && !colliding && !collide) { debug("enabling collider\n"); collide = colliding = true; goto retry; } } thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos) { // Find a spare thread to execute the call. int i; for (i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (!th->created) thread_create(th, i); if (event_isset(&th->done)) { if (th->executing) handle_completion(th); break; } } if (i == kMaxThreads) exitf("out of threads"); thread_t* th = &threads[i]; debug("scheduling call %d [%s] on thread %d\n", call_index, syscalls[call_num].name, th->id); if (event_isset(&th->ready) || !event_isset(&th->done) || th->executing) fail("bad thread state in schedule: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); last_scheduled = th; th->colliding = colliding; th->copyout_pos = pos; th->copyout_index = copyout_index; event_reset(&th->done); th->executing = true; th->call_index = call_index; th->call_num = call_num; th->num_args = num_args; for (int i = 0; i < kMaxArgs; i++) th->args[i] = args[i]; event_set(&th->ready); running++; return th; } #if SYZ_EXECUTOR_USES_SHMEM template <typename cover_t> void write_coverage_signal(thread_t* th, uint32* signal_count_pos, uint32* cover_count_pos) { // Write out feedback signals. // Currently it is code edges computed as xor of two subsequent basic block PCs. cover_t* cover_data = ((cover_t*)th->cov.data) + 1; uint32 nsig = 0; cover_t prev = 0; for (uint32 i = 0; i < th->cov.size; i++) { cover_t pc = cover_data[i]; if (!cover_check(pc)) { debug("got bad pc: 0x%llx\n", (uint64)pc); doexit(0); } cover_t sig = pc ^ prev; prev = hash(pc); if (dedup(sig)) continue; write_output(sig); nsig++; } // Write out number of signals. *signal_count_pos = nsig; if (!flag_collect_cover) return; // Write out real coverage (basic block PCs). uint32 cover_size = th->cov.size; if (flag_dedup_cover) { cover_t* end = cover_data + cover_size; std::sort(cover_data, end); cover_size = std::unique(cover_data, end) - cover_data; } // Truncate PCs to uint32 assuming that they fit into 32-bits. // True for x86_64 and arm64 without KASLR. for (uint32 i = 0; i < cover_size; i++) write_output(cover_data[i]); *cover_count_pos = cover_size; } #endif void handle_completion(thread_t* th) { debug("completion of call %d [%s] on thread %d\n", th->call_index, syscalls[th->call_num].name, th->id); if (event_isset(&th->ready) || !event_isset(&th->done) || !th->executing) fail("bad thread state in completion: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); if (th->res != (long)-1) copyout_call_results(th); if (!collide && !th->colliding) write_call_output(th, true); th->executing = false; running--; if (running < 0) fail("running = %d", running); } void copyout_call_results(thread_t* th) { if (th->copyout_index != no_copyout) { if (th->copyout_index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", th->copyout_index); results[th->copyout_index].executed = true; results[th->copyout_index].val = th->res; } for (bool done = false; !done;) { uint64 instr = read_input(&th->copyout_pos); switch (instr) { case instr_copyout: { uint64 index = read_input(&th->copyout_pos); if (index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", index); char* addr = (char*)read_input(&th->copyout_pos); uint64 size = read_input(&th->copyout_pos); uint64 val = 0; if (copyout(addr, size, &val)) { results[index].executed = true; results[index].val = val; } debug("copyout 0x%llx from %p\n", val, addr); break; } default: done = true; break; } } } void write_call_output(thread_t* th, bool finished) { uint32 reserrno = 999; uint32 call_flags = call_flag_executed; const bool blocked = th != last_scheduled; if (finished) { reserrno = th->res != -1 ? 0 : th->reserrno; call_flags |= call_flag_finished | (blocked ? call_flag_blocked : 0) | (th->fault_injected ? call_flag_fault_injected : 0); } #if SYZ_EXECUTOR_USES_SHMEM write_output(th->call_index); write_output(th->call_num); write_output(reserrno); write_output(call_flags); uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later uint32* comps_count_pos = write_output(0); // filled in later if (flag_collect_comps) { // Collect only the comparisons uint32 ncomps = th->cov.size; kcov_comparison_t* start = (kcov_comparison_t*)(th->cov.data + sizeof(uint64)); kcov_comparison_t* end = start + ncomps; if ((char*)end > th->cov.data_end) fail("too many comparisons %u", ncomps); std::sort(start, end); ncomps = std::unique(start, end) - start; uint32 comps_size = 0; for (uint32 i = 0; i < ncomps; ++i) { if (start[i].ignore()) continue; comps_size++; start[i].write(); } // Write out number of comparisons. *comps_count_pos = comps_size; } else if (flag_cover) { if (is_kernel_64_bit) write_coverage_signal<uint64>(th, signal_count_pos, cover_count_pos); else write_coverage_signal<uint32>(th, signal_count_pos, cover_count_pos); } debug("out #%u: index=%u num=%u errno=%d finished=%d blocked=%d sig=%u cover=%u comps=%u\n", completed, th->call_index, th->call_num, reserrno, finished, blocked, *signal_count_pos, *cover_count_pos, *comps_count_pos); completed++; write_completed(completed); #else call_reply reply; reply.header.magic = kOutMagic; reply.header.done = 0; reply.header.status = 0; reply.call_index = th->call_index; reply.call_num = th->call_num; reply.reserrno = reserrno; reply.flags = call_flags; reply.signal_size = 0; reply.cover_size = 0; reply.comps_size = 0; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe call write failed"); debug("out: index=%u num=%u errno=%d finished=%d blocked=%d\n", th->call_index, th->call_num, reserrno, finished, blocked); #endif } void thread_create(thread_t* th, int id) { th->created = true; th->id = id; th->executing = false; event_init(&th->ready); event_init(&th->done); event_set(&th->done); if (flag_threaded) thread_start(worker_thread, th); } void* worker_thread(void* arg) { thread_t* th = (thread_t*)arg; if (flag_cover) cover_enable(&th->cov, flag_collect_comps); for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th); event_set(&th->done); } return 0; } void execute_call(thread_t* th) { const call_t* call = &syscalls[th->call_num]; debug("#%d: %s(", th->id, call->name); for (int i = 0; i < th->num_args; i++) { if (i != 0) debug(", "); debug("0x%lx", th->args[i]); } debug(")\n"); int fail_fd = -1; if (flag_inject_fault && th->call_index == flag_fault_call) { if (collide) fail("both collide and fault injection are enabled"); debug("injecting fault into %d-th operation\n", flag_fault_nth); fail_fd = inject_fault(flag_fault_nth); } if (flag_cover) cover_reset(&th->cov); errno = 0; th->res = execute_syscall(call, th->args); th->reserrno = errno; if (th->res == -1 && th->reserrno == 0) th->reserrno = EINVAL; // our syz syscalls may misbehave if (flag_cover) { cover_collect(&th->cov); debug("#%d: read cover size = %u\n", th->id, th->cov.size); if (th->cov.size >= kCoverSize) fail("#%d: too much cover %u", th->id, th->cov.size); } th->fault_injected = false; if (flag_inject_fault && th->call_index == flag_fault_call) { th->fault_injected = fault_injected(fail_fd); debug("fault injected: %d\n", th->fault_injected); } if (th->res == -1) debug("#%d: %s = errno(%d)\n", th->id, call->name, th->reserrno); else debug("#%d: %s = 0x%lx\n", th->id, call->name, th->res); } #if SYZ_EXECUTOR_USES_SHMEM static uint32 hash(uint32 a) { a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } const uint32 dedup_table_size = 8 << 10; uint32 dedup_table[dedup_table_size]; // Poorman's best-effort hashmap-based deduplication. // The hashmap is global which means that we deduplicate across different calls. // This is OK because we are interested only in new signals. static bool dedup(uint32 sig) { for (uint32 i = 0; i < 4; i++) { uint32 pos = (sig + i) % dedup_table_size; if (dedup_table[pos] == sig) return true; if (dedup_table[pos] == 0) { dedup_table[pos] = sig; return false; } } dedup_table[sig % dedup_table_size] = sig; return false; } #endif void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len) { if (bf != binary_format_native && (bf_off != 0 || bf_len != 0)) fail("bitmask for string format %llu/%llu", bf_off, bf_len); switch (bf) { case binary_format_native: NONFAILING(switch (size) { case 1: STORE_BY_BITMASK(uint8, addr, val, bf_off, bf_len); break; case 2: STORE_BY_BITMASK(uint16, addr, val, bf_off, bf_len); break; case 4: STORE_BY_BITMASK(uint32, addr, val, bf_off, bf_len); break; case 8: STORE_BY_BITMASK(uint64, addr, val, bf_off, bf_len); break; default: fail("copyin: bad argument size %llu", size); }); break; case binary_format_strdec: if (size != 20) fail("bad strdec size %llu", size); NONFAILING(sprintf((char*)addr, "%020llu", val)); break; case binary_format_strhex: if (size != 18) fail("bad strhex size %llu", size); NONFAILING(sprintf((char*)addr, "0x%016llx", val)); break; case binary_format_stroct: if (size != 23) fail("bad stroct size %llu", size); NONFAILING(sprintf((char*)addr, "%023llo", val)); break; default: fail("unknown binary format %llu", bf); } } bool copyout(char* addr, uint64 size, uint64* res) { bool ok = false; NONFAILING( switch (size) { case 1: *res = *(uint8*)addr; break; case 2: *res = *(uint16*)addr; break; case 4: *res = *(uint32*)addr; break; case 8: *res = *(uint64*)addr; break; default: fail("copyout: bad argument size %llu", size); } __atomic_store_n(&ok, true, __ATOMIC_RELEASE);); return ok; } uint64 read_arg(uint64** input_posp) { uint64 typ = read_input(input_posp); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 val = read_const_arg(input_posp, &size, &bf, &bf_off, &bf_len); if (bf != binary_format_native) fail("bad argument binary format %llu", bf); if (bf_off != 0 || bf_len != 0) fail("bad argument bitfield %llu/%llu", bf_off, bf_len); return val; } case arg_result: { uint64 meta = read_input(input_posp); uint64 bf = meta >> 8; if (bf != binary_format_native) fail("bad result argument format %llu", bf); return read_result(input_posp); } default: fail("bad argument type %llu", typ); } } uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf_p, uint64* bf_off_p, uint64* bf_len_p) { uint64 meta = read_input(input_posp); uint64 val = read_input(input_posp); *size_p = meta & 0xff; uint64 bf = (meta >> 8) & 0xff; *bf_off_p = (meta >> 16) & 0xff; *bf_len_p = (meta >> 24) & 0xff; uint64 pid_stride = meta >> 32; val += pid_stride * procid; if (bf == binary_format_bigendian) { bf = binary_format_native; switch (*size_p) { case 2: val = htobe16(val); break; case 4: val = htobe32(val); break; case 8: val = htobe64(val); break; default: fail("bad big-endian int size %llu", *size_p); } } *bf_p = bf; return val; } uint64 read_result(uint64** input_posp) { uint64 idx = read_input(input_posp); uint64 op_div = read_input(input_posp); uint64 op_add = read_input(input_posp); uint64 arg = read_input(input_posp); if (idx >= kMaxCommands) fail("command refers to bad result %lld", idx); if (results[idx].executed) { arg = results[idx].val; if (op_div != 0) arg = arg / op_div; arg += op_add; } return arg; } uint64 read_input(uint64** input_posp, bool peek) { uint64* input_pos = *input_posp; if ((char*)input_pos >= input_data + kMaxInput) fail("input command overflows input %p: [%p:%p)", input_pos, input_data, input_data + kMaxInput); if (!peek) *input_posp = input_pos + 1; return *input_pos; } #if SYZ_EXECUTOR_USES_SHMEM uint32* write_output(uint32 v) { if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *output_pos = v; return output_pos++; } void write_completed(uint32 completed) { __atomic_store_n(output_data, completed, __ATOMIC_RELEASE); } #endif #if SYZ_EXECUTOR_USES_SHMEM void kcov_comparison_t::write() { // Write order: type arg1 arg2 pc. write_output((uint32)type); // KCOV converts all arguments of size x first to uintx_t and then to // uint64. We want to properly extend signed values, e.g we want // int8 c = 0xfe to be represented as 0xfffffffffffffffe. // Note that uint8 c = 0xfe will be represented the same way. // This is ok because during hints processing we will anyways try // the value 0x00000000000000fe. switch (type & KCOV_CMP_SIZE_MASK) { case KCOV_CMP_SIZE1: arg1 = (uint64)(long long)(signed char)arg1; arg2 = (uint64)(long long)(signed char)arg2; break; case KCOV_CMP_SIZE2: arg1 = (uint64)(long long)(short)arg1; arg2 = (uint64)(long long)(short)arg2; break; case KCOV_CMP_SIZE4: arg1 = (uint64)(long long)(int)arg1; arg2 = (uint64)(long long)(int)arg2; break; } bool is_size_8 = (type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8; if (!is_size_8) { write_output((uint32)arg1); write_output((uint32)arg2); return; } // If we have 64 bits arguments then write them in Little-endian. write_output((uint32)(arg1 & 0xFFFFFFFF)); write_output((uint32)(arg1 >> 32)); write_output((uint32)(arg2 & 0xFFFFFFFF)); write_output((uint32)(arg2 >> 32)); } bool kcov_comparison_t::ignore() const { // Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help. if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST))) return true; if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) { // This can be a pointer (assuming 64-bit kernel). // First of all, we want avert fuzzer from our output region. // Without this fuzzer manages to discover and corrupt it. uint64 out_start = (uint64)output_data; uint64 out_end = out_start + kMaxOutput; if (arg1 >= out_start && arg1 <= out_end) return true; if (arg2 >= out_start && arg2 <= out_end) return true; #if defined(GOOS_linux) // Filter out kernel physical memory addresses. // These are internal kernel comparisons and should not be interesting. // The range covers first 1TB of physical mapping. uint64 kmem_start = (uint64)0xffff880000000000ull; uint64 kmem_end = (uint64)0xffff890000000000ull; bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end; bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end; if (kptr1 && kptr2) return true; if (kptr1 && arg2 == 0) return true; if (kptr2 && arg1 == 0) return true; #endif } return false; } bool kcov_comparison_t::operator==(const struct kcov_comparison_t& other) const { // We don't check for PC equality now, because it is not used. return type == other.type && arg1 == other.arg1 && arg2 == other.arg2; } bool kcov_comparison_t::operator<(const struct kcov_comparison_t& other) const { if (type != other.type) return type < other.type; if (arg1 != other.arg1) return arg1 < other.arg1; // We don't check for PC equality now, because it is not used. return arg2 < other.arg2; } #endif void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); // ENOMEM/EAGAIN is frequent cause of failures in fuzzing context, // so handle it here as non-fatal error. doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus); } void error(const char* msg, ...) { va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, "\n"); doexit(kErrorStatus); } void exitf(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kRetryStatus); } void debug(const char* msg, ...) { if (!flag_debug) return; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fflush(stderr); } void debug_dump_data(const char* data, int length) { if (!flag_debug) return; for (int i = 0; i < length; i++) { debug("%02x ", data[i] & 0xff); if (i % 16 == 15) debug("\n"); } debug("\n"); }