//===-- llvm/Attributes.h - Container for Attributes ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file contains the simple types necessary to represent the /// attributes associated with functions and their calls. /// //===----------------------------------------------------------------------===// #ifndef LLVM_IR_ATTRIBUTES_H #define LLVM_IR_ATTRIBUTES_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/PointerLikeTypeTraits.h" #include "llvm-c/Types.h" #include <bitset> #include <cassert> #include <map> #include <string> namespace llvm { class AttrBuilder; class AttributeImpl; class AttributeSetImpl; class AttributeSetNode; class Constant; template<typename T> struct DenseMapInfo; class Function; class LLVMContext; class Type; //===----------------------------------------------------------------------===// /// \class /// \brief Functions, function parameters, and return types can have attributes /// to indicate how they should be treated by optimizations and code /// generation. This class represents one of those attributes. It's light-weight /// and should be passed around by-value. class Attribute { public: /// This enumeration lists the attributes that can be associated with /// parameters, function results, or the function itself. /// /// Note: The `uwtable' attribute is about the ABI or the user mandating an /// entry in the unwind table. The `nounwind' attribute is about an exception /// passing by the function. /// /// In a theoretical system that uses tables for profiling and SjLj for /// exceptions, they would be fully independent. In a normal system that uses /// tables for both, the semantics are: /// /// nil = Needs an entry because an exception might pass by. /// nounwind = No need for an entry /// uwtable = Needs an entry because the ABI says so and because /// an exception might pass by. /// uwtable + nounwind = Needs an entry because the ABI says so. enum AttrKind { // IR-Level Attributes None, ///< No attributes have been set #define GET_ATTR_ENUM #include "llvm/IR/Attributes.gen" EndAttrKinds ///< Sentinal value useful for loops }; private: AttributeImpl *pImpl; Attribute(AttributeImpl *A) : pImpl(A) {} public: Attribute() : pImpl(nullptr) {} //===--------------------------------------------------------------------===// // Attribute Construction //===--------------------------------------------------------------------===// /// \brief Return a uniquified Attribute object. static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val = 0); static Attribute get(LLVMContext &Context, StringRef Kind, StringRef Val = StringRef()); /// \brief Return a uniquified Attribute object that has the specific /// alignment set. static Attribute getWithAlignment(LLVMContext &Context, uint64_t Align); static Attribute getWithStackAlignment(LLVMContext &Context, uint64_t Align); static Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes); static Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes); static Attribute getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg); //===--------------------------------------------------------------------===// // Attribute Accessors //===--------------------------------------------------------------------===// /// \brief Return true if the attribute is an Attribute::AttrKind type. bool isEnumAttribute() const; /// \brief Return true if the attribute is an integer attribute. bool isIntAttribute() const; /// \brief Return true if the attribute is a string (target-dependent) /// attribute. bool isStringAttribute() const; /// \brief Return true if the attribute is present. bool hasAttribute(AttrKind Val) const; /// \brief Return true if the target-dependent attribute is present. bool hasAttribute(StringRef Val) const; /// \brief Return the attribute's kind as an enum (Attribute::AttrKind). This /// requires the attribute to be an enum or integer attribute. Attribute::AttrKind getKindAsEnum() const; /// \brief Return the attribute's value as an integer. This requires that the /// attribute be an integer attribute. uint64_t getValueAsInt() const; /// \brief Return the attribute's kind as a string. This requires the /// attribute to be a string attribute. StringRef getKindAsString() const; /// \brief Return the attribute's value as a string. This requires the /// attribute to be a string attribute. StringRef getValueAsString() const; /// \brief Returns the alignment field of an attribute as a byte alignment /// value. unsigned getAlignment() const; /// \brief Returns the stack alignment field of an attribute as a byte /// alignment value. unsigned getStackAlignment() const; /// \brief Returns the number of dereferenceable bytes from the /// dereferenceable attribute. uint64_t getDereferenceableBytes() const; /// \brief Returns the number of dereferenceable_or_null bytes from the /// dereferenceable_or_null attribute. uint64_t getDereferenceableOrNullBytes() const; /// Returns the argument numbers for the allocsize attribute (or pair(0, 0) /// if not known). std::pair<unsigned, Optional<unsigned>> getAllocSizeArgs() const; /// \brief The Attribute is converted to a string of equivalent mnemonic. This /// is, presumably, for writing out the mnemonics for the assembly writer. std::string getAsString(bool InAttrGrp = false) const; /// \brief Equality and non-equality operators. bool operator==(Attribute A) const { return pImpl == A.pImpl; } bool operator!=(Attribute A) const { return pImpl != A.pImpl; } /// \brief Less-than operator. Useful for sorting the attributes list. bool operator<(Attribute A) const; void Profile(FoldingSetNodeID &ID) const { ID.AddPointer(pImpl); } /// \brief Return a raw pointer that uniquely identifies this attribute. void *getRawPointer() const { return pImpl; } /// \brief Get an attribute from a raw pointer created by getRawPointer. static Attribute fromRawPointer(void *RawPtr) { return Attribute(reinterpret_cast<AttributeImpl*>(RawPtr)); } }; // Specialized opaque value conversions. inline LLVMAttributeRef wrap(Attribute Attr) { return reinterpret_cast<LLVMAttributeRef>(Attr.getRawPointer()); } // Specialized opaque value conversions. inline Attribute unwrap(LLVMAttributeRef Attr) { return Attribute::fromRawPointer(Attr); } //===----------------------------------------------------------------------===// /// \class /// \brief This class holds the attributes for a function, its return value, and /// its parameters. You access the attributes for each of them via an index into /// the AttributeSet object. The function attributes are at index /// `AttributeSet::FunctionIndex', the return value is at index /// `AttributeSet::ReturnIndex', and the attributes for the parameters start at /// index `1'. class AttributeSet { public: enum AttrIndex : unsigned { ReturnIndex = 0U, FunctionIndex = ~0U }; private: friend class AttrBuilder; friend class AttributeSetImpl; friend class AttributeSetNode; template <typename Ty> friend struct DenseMapInfo; /// \brief The attributes that we are managing. This can be null to represent /// the empty attributes list. AttributeSetImpl *pImpl; /// \brief The attributes for the specified index are returned. AttributeSetNode *getAttributes(unsigned Index) const; /// \brief Create an AttributeSet with the specified parameters in it. static AttributeSet get(LLVMContext &C, ArrayRef<std::pair<unsigned, Attribute> > Attrs); static AttributeSet get(LLVMContext &C, ArrayRef<std::pair<unsigned, AttributeSetNode*> > Attrs); static AttributeSet getImpl(LLVMContext &C, ArrayRef<std::pair<unsigned, AttributeSetNode*> > Attrs); explicit AttributeSet(AttributeSetImpl *LI) : pImpl(LI) {} public: AttributeSet() : pImpl(nullptr) {} //===--------------------------------------------------------------------===// // AttributeSet Construction and Mutation //===--------------------------------------------------------------------===// /// \brief Return an AttributeSet with the specified parameters in it. static AttributeSet get(LLVMContext &C, ArrayRef<AttributeSet> Attrs); static AttributeSet get(LLVMContext &C, unsigned Index, ArrayRef<Attribute::AttrKind> Kinds); static AttributeSet get(LLVMContext &C, unsigned Index, ArrayRef<StringRef> Kind); static AttributeSet get(LLVMContext &C, unsigned Index, const AttrBuilder &B); /// \brief Add an attribute to the attribute set at the given index. Because /// attribute sets are immutable, this returns a new set. AttributeSet addAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const; /// \brief Add an attribute to the attribute set at the given index. Because /// attribute sets are immutable, this returns a new set. AttributeSet addAttribute(LLVMContext &C, unsigned Index, StringRef Kind, StringRef Value = StringRef()) const; /// Add an attribute to the attribute set at the given indices. Because /// attribute sets are immutable, this returns a new set. AttributeSet addAttribute(LLVMContext &C, ArrayRef<unsigned> Indices, Attribute A) const; /// \brief Add attributes to the attribute set at the given index. Because /// attribute sets are immutable, this returns a new set. AttributeSet addAttributes(LLVMContext &C, unsigned Index, AttributeSet Attrs) const; /// \brief Remove the specified attribute at the specified index from this /// attribute list. Because attribute lists are immutable, this returns the /// new list. AttributeSet removeAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const; /// \brief Remove the specified attribute at the specified index from this /// attribute list. Because attribute lists are immutable, this returns the /// new list. AttributeSet removeAttribute(LLVMContext &C, unsigned Index, StringRef Kind) const; /// \brief Remove the specified attributes at the specified index from this /// attribute list. Because attribute lists are immutable, this returns the /// new list. AttributeSet removeAttributes(LLVMContext &C, unsigned Index, AttributeSet Attrs) const; /// \brief Remove the specified attributes at the specified index from this /// attribute list. Because attribute lists are immutable, this returns the /// new list. AttributeSet removeAttributes(LLVMContext &C, unsigned Index, const AttrBuilder &Attrs) const; /// \brief Add the dereferenceable attribute to the attribute set at the given /// index. Because attribute sets are immutable, this returns a new set. AttributeSet addDereferenceableAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const; /// \brief Add the dereferenceable_or_null attribute to the attribute set at /// the given index. Because attribute sets are immutable, this returns a new /// set. AttributeSet addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const; /// Add the allocsize attribute to the attribute set at the given index. /// Because attribute sets are immutable, this returns a new set. AttributeSet addAllocSizeAttr(LLVMContext &C, unsigned Index, unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg); //===--------------------------------------------------------------------===// // AttributeSet Accessors //===--------------------------------------------------------------------===// /// \brief Retrieve the LLVM context. LLVMContext &getContext() const; /// \brief The attributes for the specified index are returned. AttributeSet getParamAttributes(unsigned Index) const; /// \brief The attributes for the ret value are returned. AttributeSet getRetAttributes() const; /// \brief The function attributes are returned. AttributeSet getFnAttributes() const; /// \brief Return true if the attribute exists at the given index. bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const; /// \brief Return true if the attribute exists at the given index. bool hasAttribute(unsigned Index, StringRef Kind) const; /// \brief Return true if attribute exists at the given index. bool hasAttributes(unsigned Index) const; /// \brief Equivalent to hasAttribute(AttributeSet::FunctionIndex, Kind) but /// may be faster. bool hasFnAttribute(Attribute::AttrKind Kind) const; /// \brief Equivalent to hasAttribute(AttributeSet::FunctionIndex, Kind) but /// may be faster. bool hasFnAttribute(StringRef Kind) const; /// \brief Return true if the specified attribute is set for at least one /// parameter or for the return value. If Index is not nullptr, the index /// of a parameter with the specified attribute is provided. bool hasAttrSomewhere(Attribute::AttrKind Kind, unsigned *Index = nullptr) const; /// \brief Return the attribute object that exists at the given index. Attribute getAttribute(unsigned Index, Attribute::AttrKind Kind) const; /// \brief Return the attribute object that exists at the given index. Attribute getAttribute(unsigned Index, StringRef Kind) const; /// \brief Return the alignment for the specified function parameter. unsigned getParamAlignment(unsigned Index) const; /// \brief Get the stack alignment. unsigned getStackAlignment(unsigned Index) const; /// \brief Get the number of dereferenceable bytes (or zero if unknown). uint64_t getDereferenceableBytes(unsigned Index) const; /// \brief Get the number of dereferenceable_or_null bytes (or zero if /// unknown). uint64_t getDereferenceableOrNullBytes(unsigned Index) const; /// Get the allocsize argument numbers (or pair(0, 0) if unknown). std::pair<unsigned, Optional<unsigned>> getAllocSizeArgs(unsigned Index) const; /// \brief Return the attributes at the index as a string. std::string getAsString(unsigned Index, bool InAttrGrp = false) const; typedef ArrayRef<Attribute>::iterator iterator; iterator begin(unsigned Slot) const; iterator end(unsigned Slot) const; /// operator==/!= - Provide equality predicates. bool operator==(const AttributeSet &RHS) const { return pImpl == RHS.pImpl; } bool operator!=(const AttributeSet &RHS) const { return pImpl != RHS.pImpl; } //===--------------------------------------------------------------------===// // AttributeSet Introspection //===--------------------------------------------------------------------===// /// \brief Return a raw pointer that uniquely identifies this attribute list. void *getRawPointer() const { return pImpl; } /// \brief Return true if there are no attributes. bool isEmpty() const { return getNumSlots() == 0; } /// \brief Return the number of slots used in this attribute list. This is /// the number of arguments that have an attribute set on them (including the /// function itself). unsigned getNumSlots() const; /// \brief Return the index for the given slot. unsigned getSlotIndex(unsigned Slot) const; /// \brief Return the attributes at the given slot. AttributeSet getSlotAttributes(unsigned Slot) const; void dump() const; }; //===----------------------------------------------------------------------===// /// \class /// \brief Provide DenseMapInfo for AttributeSet. template<> struct DenseMapInfo<AttributeSet> { static inline AttributeSet getEmptyKey() { uintptr_t Val = static_cast<uintptr_t>(-1); Val <<= PointerLikeTypeTraits<void*>::NumLowBitsAvailable; return AttributeSet(reinterpret_cast<AttributeSetImpl*>(Val)); } static inline AttributeSet getTombstoneKey() { uintptr_t Val = static_cast<uintptr_t>(-2); Val <<= PointerLikeTypeTraits<void*>::NumLowBitsAvailable; return AttributeSet(reinterpret_cast<AttributeSetImpl*>(Val)); } static unsigned getHashValue(AttributeSet AS) { return (unsigned((uintptr_t)AS.pImpl) >> 4) ^ (unsigned((uintptr_t)AS.pImpl) >> 9); } static bool isEqual(AttributeSet LHS, AttributeSet RHS) { return LHS == RHS; } }; //===----------------------------------------------------------------------===// /// \class /// \brief This class is used in conjunction with the Attribute::get method to /// create an Attribute object. The object itself is uniquified. The Builder's /// value, however, is not. So this can be used as a quick way to test for /// equality, presence of attributes, etc. class AttrBuilder { std::bitset<Attribute::EndAttrKinds> Attrs; std::map<std::string, std::string> TargetDepAttrs; uint64_t Alignment; uint64_t StackAlignment; uint64_t DerefBytes; uint64_t DerefOrNullBytes; uint64_t AllocSizeArgs; public: AttrBuilder() : Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0), DerefOrNullBytes(0), AllocSizeArgs(0) {} AttrBuilder(const Attribute &A) : Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0), DerefOrNullBytes(0), AllocSizeArgs(0) { addAttribute(A); } AttrBuilder(AttributeSet AS, unsigned Idx); void clear(); /// \brief Add an attribute to the builder. AttrBuilder &addAttribute(Attribute::AttrKind Val); /// \brief Add the Attribute object to the builder. AttrBuilder &addAttribute(Attribute A); /// \brief Add the target-dependent attribute to the builder. AttrBuilder &addAttribute(StringRef A, StringRef V = StringRef()); /// \brief Remove an attribute from the builder. AttrBuilder &removeAttribute(Attribute::AttrKind Val); /// \brief Remove the attributes from the builder. AttrBuilder &removeAttributes(AttributeSet A, uint64_t Index); /// \brief Remove the target-dependent attribute to the builder. AttrBuilder &removeAttribute(StringRef A); /// \brief Add the attributes from the builder. AttrBuilder &merge(const AttrBuilder &B); /// \brief Remove the attributes from the builder. AttrBuilder &remove(const AttrBuilder &B); /// \brief Return true if the builder has any attribute that's in the /// specified builder. bool overlaps(const AttrBuilder &B) const; /// \brief Return true if the builder has the specified attribute. bool contains(Attribute::AttrKind A) const { assert((unsigned)A < Attribute::EndAttrKinds && "Attribute out of range!"); return Attrs[A]; } /// \brief Return true if the builder has the specified target-dependent /// attribute. bool contains(StringRef A) const; /// \brief Return true if the builder has IR-level attributes. bool hasAttributes() const; /// \brief Return true if the builder has any attribute that's in the /// specified attribute. bool hasAttributes(AttributeSet A, uint64_t Index) const; /// \brief Return true if the builder has an alignment attribute. bool hasAlignmentAttr() const; /// \brief Retrieve the alignment attribute, if it exists. uint64_t getAlignment() const { return Alignment; } /// \brief Retrieve the stack alignment attribute, if it exists. uint64_t getStackAlignment() const { return StackAlignment; } /// \brief Retrieve the number of dereferenceable bytes, if the /// dereferenceable attribute exists (zero is returned otherwise). uint64_t getDereferenceableBytes() const { return DerefBytes; } /// \brief Retrieve the number of dereferenceable_or_null bytes, if the /// dereferenceable_or_null attribute exists (zero is returned otherwise). uint64_t getDereferenceableOrNullBytes() const { return DerefOrNullBytes; } /// Retrieve the allocsize args, if the allocsize attribute exists. If it /// doesn't exist, pair(0, 0) is returned. std::pair<unsigned, Optional<unsigned>> getAllocSizeArgs() const; /// \brief This turns an int alignment (which must be a power of 2) into the /// form used internally in Attribute. AttrBuilder &addAlignmentAttr(unsigned Align); /// \brief This turns an int stack alignment (which must be a power of 2) into /// the form used internally in Attribute. AttrBuilder &addStackAlignmentAttr(unsigned Align); /// \brief This turns the number of dereferenceable bytes into the form used /// internally in Attribute. AttrBuilder &addDereferenceableAttr(uint64_t Bytes); /// \brief This turns the number of dereferenceable_or_null bytes into the /// form used internally in Attribute. AttrBuilder &addDereferenceableOrNullAttr(uint64_t Bytes); /// This turns one (or two) ints into the form used internally in Attribute. AttrBuilder &addAllocSizeAttr(unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg); /// Add an allocsize attribute, using the representation returned by /// Attribute.getIntValue(). AttrBuilder &addAllocSizeAttrFromRawRepr(uint64_t RawAllocSizeRepr); /// \brief Return true if the builder contains no target-independent /// attributes. bool empty() const { return Attrs.none(); } // Iterators for target-dependent attributes. typedef std::pair<std::string, std::string> td_type; typedef std::map<std::string, std::string>::iterator td_iterator; typedef std::map<std::string, std::string>::const_iterator td_const_iterator; typedef llvm::iterator_range<td_iterator> td_range; typedef llvm::iterator_range<td_const_iterator> td_const_range; td_iterator td_begin() { return TargetDepAttrs.begin(); } td_iterator td_end() { return TargetDepAttrs.end(); } td_const_iterator td_begin() const { return TargetDepAttrs.begin(); } td_const_iterator td_end() const { return TargetDepAttrs.end(); } td_range td_attrs() { return td_range(td_begin(), td_end()); } td_const_range td_attrs() const { return td_const_range(td_begin(), td_end()); } bool td_empty() const { return TargetDepAttrs.empty(); } bool operator==(const AttrBuilder &B); bool operator!=(const AttrBuilder &B) { return !(*this == B); } }; namespace AttributeFuncs { /// \brief Which attributes cannot be applied to a type. AttrBuilder typeIncompatible(Type *Ty); /// \returns Return true if the two functions have compatible target-independent /// attributes for inlining purposes. bool areInlineCompatible(const Function &Caller, const Function &Callee); /// \brief Merge caller's and callee's attributes. void mergeAttributesForInlining(Function &Caller, const Function &Callee); } // end AttributeFuncs namespace } // end llvm namespace #endif