//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief /// This file declares a class to represent arbitrary precision floating point /// values and provide a variety of arithmetic operations on them. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_APFLOAT_H #define LLVM_ADT_APFLOAT_H #include "llvm/ADT/APInt.h" #include "llvm/Support/ErrorHandling.h" #include <memory> namespace llvm { struct fltSemantics; class APSInt; class StringRef; class APFloat; class raw_ostream; template <typename T> class SmallVectorImpl; /// Enum that represents what fraction of the LSB truncated bits of an fp number /// represent. /// /// This essentially combines the roles of guard and sticky bits. enum lostFraction { // Example of truncated bits: lfExactlyZero, // 000000 lfLessThanHalf, // 0xxxxx x's not all zero lfExactlyHalf, // 100000 lfMoreThanHalf // 1xxxxx x's not all zero }; /// \brief A self-contained host- and target-independent arbitrary-precision /// floating-point software implementation. /// /// APFloat uses bignum integer arithmetic as provided by static functions in /// the APInt class. The library will work with bignum integers whose parts are /// any unsigned type at least 16 bits wide, but 64 bits is recommended. /// /// Written for clarity rather than speed, in particular with a view to use in /// the front-end of a cross compiler so that target arithmetic can be correctly /// performed on the host. Performance should nonetheless be reasonable, /// particularly for its intended use. It may be useful as a base /// implementation for a run-time library during development of a faster /// target-specific one. /// /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all /// implemented operations. Currently implemented operations are add, subtract, /// multiply, divide, fused-multiply-add, conversion-to-float, /// conversion-to-integer and conversion-from-integer. New rounding modes /// (e.g. away from zero) can be added with three or four lines of code. /// /// Four formats are built-in: IEEE single precision, double precision, /// quadruple precision, and x87 80-bit extended double (when operating with /// full extended precision). Adding a new format that obeys IEEE semantics /// only requires adding two lines of code: a declaration and definition of the /// format. /// /// All operations return the status of that operation as an exception bit-mask, /// so multiple operations can be done consecutively with their results or-ed /// together. The returned status can be useful for compiler diagnostics; e.g., /// inexact, underflow and overflow can be easily diagnosed on constant folding, /// and compiler optimizers can determine what exceptions would be raised by /// folding operations and optimize, or perhaps not optimize, accordingly. /// /// At present, underflow tininess is detected after rounding; it should be /// straight forward to add support for the before-rounding case too. /// /// The library reads hexadecimal floating point numbers as per C99, and /// correctly rounds if necessary according to the specified rounding mode. /// Syntax is required to have been validated by the caller. It also converts /// floating point numbers to hexadecimal text as per the C99 %a and %A /// conversions. The output precision (or alternatively the natural minimal /// precision) can be specified; if the requested precision is less than the /// natural precision the output is correctly rounded for the specified rounding /// mode. /// /// It also reads decimal floating point numbers and correctly rounds according /// to the specified rounding mode. /// /// Conversion to decimal text is not currently implemented. /// /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit /// signed exponent, and the significand as an array of integer parts. After /// normalization of a number of precision P the exponent is within the range of /// the format, and if the number is not denormal the P-th bit of the /// significand is set as an explicit integer bit. For denormals the most /// significant bit is shifted right so that the exponent is maintained at the /// format's minimum, so that the smallest denormal has just the least /// significant bit of the significand set. The sign of zeroes and infinities /// is significant; the exponent and significand of such numbers is not stored, /// but has a known implicit (deterministic) value: 0 for the significands, 0 /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and /// significand are deterministic, although not really meaningful, and preserved /// in non-conversion operations. The exponent is implicitly all 1 bits. /// /// APFloat does not provide any exception handling beyond default exception /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause /// by encoding Signaling NaNs with the first bit of its trailing significand as /// 0. /// /// TODO /// ==== /// /// Some features that may or may not be worth adding: /// /// Binary to decimal conversion (hard). /// /// Optional ability to detect underflow tininess before rounding. /// /// New formats: x87 in single and double precision mode (IEEE apart from /// extended exponent range) (hard). /// /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. /// // This is the common type definitions shared by APFloat and its internal // implementation classes. This struct should not define any non-static data // members. struct APFloatBase { /// A signed type to represent a floating point numbers unbiased exponent. typedef signed short ExponentType; /// \name Floating Point Semantics. /// @{ static const fltSemantics &IEEEhalf(); static const fltSemantics &IEEEsingle(); static const fltSemantics &IEEEdouble(); static const fltSemantics &IEEEquad(); static const fltSemantics &PPCDoubleDouble(); static const fltSemantics &x87DoubleExtended(); /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with /// anything real. static const fltSemantics &Bogus(); /// @} /// IEEE-754R 5.11: Floating Point Comparison Relations. enum cmpResult { cmpLessThan, cmpEqual, cmpGreaterThan, cmpUnordered }; /// IEEE-754R 4.3: Rounding-direction attributes. enum roundingMode { rmNearestTiesToEven, rmTowardPositive, rmTowardNegative, rmTowardZero, rmNearestTiesToAway }; /// IEEE-754R 7: Default exception handling. /// /// opUnderflow or opOverflow are always returned or-ed with opInexact. enum opStatus { opOK = 0x00, opInvalidOp = 0x01, opDivByZero = 0x02, opOverflow = 0x04, opUnderflow = 0x08, opInexact = 0x10 }; /// Category of internally-represented number. enum fltCategory { fcInfinity, fcNaN, fcNormal, fcZero }; /// Convenience enum used to construct an uninitialized APFloat. enum uninitializedTag { uninitialized }; /// \brief Enumeration of \c ilogb error results. enum IlogbErrorKinds { IEK_Zero = INT_MIN + 1, IEK_NaN = INT_MIN, IEK_Inf = INT_MAX }; static unsigned int semanticsPrecision(const fltSemantics &); static ExponentType semanticsMinExponent(const fltSemantics &); static ExponentType semanticsMaxExponent(const fltSemantics &); static unsigned int semanticsSizeInBits(const fltSemantics &); /// Returns the size of the floating point number (in bits) in the given /// semantics. static unsigned getSizeInBits(const fltSemantics &Sem); }; namespace detail { class IEEEFloat final : public APFloatBase { public: /// \name Constructors /// @{ IEEEFloat(const fltSemantics &); // Default construct to 0.0 IEEEFloat(const fltSemantics &, integerPart); IEEEFloat(const fltSemantics &, uninitializedTag); IEEEFloat(const fltSemantics &, const APInt &); explicit IEEEFloat(double d); explicit IEEEFloat(float f); IEEEFloat(const IEEEFloat &); IEEEFloat(IEEEFloat &&); ~IEEEFloat(); /// @} /// \brief Returns whether this instance allocated memory. bool needsCleanup() const { return partCount() > 1; } /// \name Convenience "constructors" /// @{ /// @} /// Used to insert APFloat objects, or objects that contain APFloat objects, /// into FoldingSets. void Profile(FoldingSetNodeID &NID) const; /// \name Arithmetic /// @{ opStatus add(const IEEEFloat &, roundingMode); opStatus subtract(const IEEEFloat &, roundingMode); opStatus multiply(const IEEEFloat &, roundingMode); opStatus divide(const IEEEFloat &, roundingMode); /// IEEE remainder. opStatus remainder(const IEEEFloat &); /// C fmod, or llvm frem. opStatus mod(const IEEEFloat &); opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); opStatus roundToIntegral(roundingMode); /// IEEE-754R 5.3.1: nextUp/nextDown. opStatus next(bool nextDown); /// \brief Operator+ overload which provides the default /// \c nmNearestTiesToEven rounding mode and *no* error checking. IEEEFloat operator+(const IEEEFloat &RHS) const { IEEEFloat Result = *this; Result.add(RHS, rmNearestTiesToEven); return Result; } /// \brief Operator- overload which provides the default /// \c nmNearestTiesToEven rounding mode and *no* error checking. IEEEFloat operator-(const IEEEFloat &RHS) const { IEEEFloat Result = *this; Result.subtract(RHS, rmNearestTiesToEven); return Result; } /// \brief Operator* overload which provides the default /// \c nmNearestTiesToEven rounding mode and *no* error checking. IEEEFloat operator*(const IEEEFloat &RHS) const { IEEEFloat Result = *this; Result.multiply(RHS, rmNearestTiesToEven); return Result; } /// \brief Operator/ overload which provides the default /// \c nmNearestTiesToEven rounding mode and *no* error checking. IEEEFloat operator/(const IEEEFloat &RHS) const { IEEEFloat Result = *this; Result.divide(RHS, rmNearestTiesToEven); return Result; } /// @} /// \name Sign operations. /// @{ void changeSign(); void clearSign(); void copySign(const IEEEFloat &); /// \brief A static helper to produce a copy of an APFloat value with its sign /// copied from some other APFloat. static IEEEFloat copySign(IEEEFloat Value, const IEEEFloat &Sign) { Value.copySign(Sign); return Value; } /// @} /// \name Conversions /// @{ opStatus convert(const fltSemantics &, roundingMode, bool *); opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const; opStatus convertToInteger(APSInt &, roundingMode, bool *) const; opStatus convertFromAPInt(const APInt &, bool, roundingMode); opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, bool, roundingMode); opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, bool, roundingMode); opStatus convertFromString(StringRef, roundingMode); APInt bitcastToAPInt() const; double convertToDouble() const; float convertToFloat() const; /// @} /// The definition of equality is not straightforward for floating point, so /// we won't use operator==. Use one of the following, or write whatever it /// is you really mean. bool operator==(const IEEEFloat &) const = delete; /// IEEE comparison with another floating point number (NaNs compare /// unordered, 0==-0). cmpResult compare(const IEEEFloat &) const; /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). bool bitwiseIsEqual(const IEEEFloat &) const; /// Write out a hexadecimal representation of the floating point value to DST, /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. /// Return the number of characters written, excluding the terminating NUL. unsigned int convertToHexString(char *dst, unsigned int hexDigits, bool upperCase, roundingMode) const; /// \name IEEE-754R 5.7.2 General operations. /// @{ /// IEEE-754R isSignMinus: Returns true if and only if the current value is /// negative. /// /// This applies to zeros and NaNs as well. bool isNegative() const { return sign; } /// IEEE-754R isNormal: Returns true if and only if the current value is normal. /// /// This implies that the current value of the float is not zero, subnormal, /// infinite, or NaN following the definition of normality from IEEE-754R. bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } /// Returns true if and only if the current value is zero, subnormal, or /// normal. /// /// This means that the value is not infinite or NaN. bool isFinite() const { return !isNaN() && !isInfinity(); } /// Returns true if and only if the float is plus or minus zero. bool isZero() const { return category == fcZero; } /// IEEE-754R isSubnormal(): Returns true if and only if the float is a /// denormal. bool isDenormal() const; /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. bool isInfinity() const { return category == fcInfinity; } /// Returns true if and only if the float is a quiet or signaling NaN. bool isNaN() const { return category == fcNaN; } /// Returns true if and only if the float is a signaling NaN. bool isSignaling() const; /// @} /// \name Simple Queries /// @{ fltCategory getCategory() const { return category; } const fltSemantics &getSemantics() const { return *semantics; } bool isNonZero() const { return category != fcZero; } bool isFiniteNonZero() const { return isFinite() && !isZero(); } bool isPosZero() const { return isZero() && !isNegative(); } bool isNegZero() const { return isZero() && isNegative(); } /// Returns true if and only if the number has the smallest possible non-zero /// magnitude in the current semantics. bool isSmallest() const; /// Returns true if and only if the number has the largest possible finite /// magnitude in the current semantics. bool isLargest() const; /// Returns true if and only if the number is an exact integer. bool isInteger() const; /// @} IEEEFloat &operator=(const IEEEFloat &); IEEEFloat &operator=(IEEEFloat &&); /// \brief Overload to compute a hash code for an APFloat value. /// /// Note that the use of hash codes for floating point values is in general /// frought with peril. Equality is hard to define for these values. For /// example, should negative and positive zero hash to different codes? Are /// they equal or not? This hash value implementation specifically /// emphasizes producing different codes for different inputs in order to /// be used in canonicalization and memoization. As such, equality is /// bitwiseIsEqual, and 0 != -0. friend hash_code hash_value(const IEEEFloat &Arg); /// Converts this value into a decimal string. /// /// \param FormatPrecision The maximum number of digits of /// precision to output. If there are fewer digits available, /// zero padding will not be used unless the value is /// integral and small enough to be expressed in /// FormatPrecision digits. 0 means to use the natural /// precision of the number. /// \param FormatMaxPadding The maximum number of zeros to /// consider inserting before falling back to scientific /// notation. 0 means to always use scientific notation. /// /// Number Precision MaxPadding Result /// ------ --------- ---------- ------ /// 1.01E+4 5 2 10100 /// 1.01E+4 4 2 1.01E+4 /// 1.01E+4 5 1 1.01E+4 /// 1.01E-2 5 2 0.0101 /// 1.01E-2 4 2 0.0101 /// 1.01E-2 4 1 1.01E-2 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, unsigned FormatMaxPadding = 3) const; /// If this value has an exact multiplicative inverse, store it in inv and /// return true. bool getExactInverse(IEEEFloat *inv) const; /// \brief Returns the exponent of the internal representation of the APFloat. /// /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). /// For special APFloat values, this returns special error codes: /// /// NaN -> \c IEK_NaN /// 0 -> \c IEK_Zero /// Inf -> \c IEK_Inf /// friend int ilogb(const IEEEFloat &Arg); /// \brief Returns: X * 2^Exp for integral exponents. friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); /// \name Special value setters. /// @{ void makeLargest(bool Neg = false); void makeSmallest(bool Neg = false); void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = nullptr); void makeInf(bool Neg = false); void makeZero(bool Neg = false); void makeQuiet(); /// Returns the smallest (by magnitude) normalized finite number in the given /// semantics. /// /// \param Negative - True iff the number should be negative void makeSmallestNormalized(bool Negative = false); /// @} cmpResult compareAbsoluteValue(const IEEEFloat &) const; private: /// \name Simple Queries /// @{ integerPart *significandParts(); const integerPart *significandParts() const; unsigned int partCount() const; /// @} /// \name Significand operations. /// @{ integerPart addSignificand(const IEEEFloat &); integerPart subtractSignificand(const IEEEFloat &, integerPart); lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *); lostFraction divideSignificand(const IEEEFloat &); void incrementSignificand(); void initialize(const fltSemantics *); void shiftSignificandLeft(unsigned int); lostFraction shiftSignificandRight(unsigned int); unsigned int significandLSB() const; unsigned int significandMSB() const; void zeroSignificand(); /// Return true if the significand excluding the integral bit is all ones. bool isSignificandAllOnes() const; /// Return true if the significand excluding the integral bit is all zeros. bool isSignificandAllZeros() const; /// @} /// \name Arithmetic on special values. /// @{ opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); opStatus divideSpecials(const IEEEFloat &); opStatus multiplySpecials(const IEEEFloat &); opStatus modSpecials(const IEEEFloat &); /// @} /// \name Miscellany /// @{ bool convertFromStringSpecials(StringRef str); opStatus normalize(roundingMode, lostFraction); opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); opStatus handleOverflow(roundingMode); bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const; opStatus convertFromUnsignedParts(const integerPart *, unsigned int, roundingMode); opStatus convertFromHexadecimalString(StringRef, roundingMode); opStatus convertFromDecimalString(StringRef, roundingMode); char *convertNormalToHexString(char *, unsigned int, bool, roundingMode) const; opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, roundingMode); /// @} APInt convertHalfAPFloatToAPInt() const; APInt convertFloatAPFloatToAPInt() const; APInt convertDoubleAPFloatToAPInt() const; APInt convertQuadrupleAPFloatToAPInt() const; APInt convertF80LongDoubleAPFloatToAPInt() const; APInt convertPPCDoubleDoubleAPFloatToAPInt() const; void initFromAPInt(const fltSemantics *Sem, const APInt &api); void initFromHalfAPInt(const APInt &api); void initFromFloatAPInt(const APInt &api); void initFromDoubleAPInt(const APInt &api); void initFromQuadrupleAPInt(const APInt &api); void initFromF80LongDoubleAPInt(const APInt &api); void initFromPPCDoubleDoubleAPInt(const APInt &api); void assign(const IEEEFloat &); void copySignificand(const IEEEFloat &); void freeSignificand(); /// Note: this must be the first data member. /// The semantics that this value obeys. const fltSemantics *semantics; /// A binary fraction with an explicit integer bit. /// /// The significand must be at least one bit wider than the target precision. union Significand { integerPart part; integerPart *parts; } significand; /// The signed unbiased exponent of the value. ExponentType exponent; /// What kind of floating point number this is. /// /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. /// Using the extra bit keeps it from failing under VisualStudio. fltCategory category : 3; /// Sign bit of the number. unsigned int sign : 1; }; hash_code hash_value(const IEEEFloat &Arg); int ilogb(const IEEEFloat &Arg); IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); // This mode implements more precise float in terms of two APFloats. // The interface and layout is designed for arbitray underlying semantics, // though currently only PPCDoubleDouble semantics are supported, whose // corresponding underlying semantics are IEEEdouble. class DoubleAPFloat final : public APFloatBase { // Note: this must be the first data member. const fltSemantics *Semantics; std::unique_ptr<APFloat[]> Floats; opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, const APFloat &cc, roundingMode RM); opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, DoubleAPFloat &Out, roundingMode RM); public: DoubleAPFloat(const fltSemantics &S); DoubleAPFloat(const fltSemantics &S, uninitializedTag); DoubleAPFloat(const fltSemantics &S, integerPart); DoubleAPFloat(const fltSemantics &S, const APInt &I); DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); DoubleAPFloat(const DoubleAPFloat &RHS); DoubleAPFloat(DoubleAPFloat &&RHS); DoubleAPFloat &operator=(const DoubleAPFloat &RHS); DoubleAPFloat &operator=(DoubleAPFloat &&RHS) { if (this != &RHS) { this->~DoubleAPFloat(); new (this) DoubleAPFloat(std::move(RHS)); } return *this; } bool needsCleanup() const { return Floats != nullptr; } APFloat &getFirst() { return Floats[0]; } const APFloat &getFirst() const { return Floats[0]; } APFloat &getSecond() { return Floats[1]; } const APFloat &getSecond() const { return Floats[1]; } opStatus add(const DoubleAPFloat &RHS, roundingMode RM); opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); void changeSign(); cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; fltCategory getCategory() const; bool isNegative() const; void makeInf(bool Neg); void makeNaN(bool SNaN, bool Neg, const APInt *fill); }; } // End detail namespace // This is a interface class that is currently forwarding functionalities from // detail::IEEEFloat. class APFloat : public APFloatBase { typedef detail::IEEEFloat IEEEFloat; typedef detail::DoubleAPFloat DoubleAPFloat; static_assert(std::is_standard_layout<IEEEFloat>::value, ""); union Storage { const fltSemantics *semantics; IEEEFloat IEEE; DoubleAPFloat Double; explicit Storage(IEEEFloat F, const fltSemantics &S); explicit Storage(DoubleAPFloat F, const fltSemantics &S) : Double(std::move(F)) { assert(&S == &PPCDoubleDouble()); } template <typename... ArgTypes> Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { if (usesLayout<IEEEFloat>(Semantics)) { new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...); return; } if (usesLayout<DoubleAPFloat>(Semantics)) { new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...); return; } llvm_unreachable("Unexpected semantics"); } ~Storage() { if (usesLayout<IEEEFloat>(*semantics)) { IEEE.~IEEEFloat(); return; } if (usesLayout<DoubleAPFloat>(*semantics)) { Double.~DoubleAPFloat(); return; } llvm_unreachable("Unexpected semantics"); } Storage(const Storage &RHS) { if (usesLayout<IEEEFloat>(*RHS.semantics)) { new (this) IEEEFloat(RHS.IEEE); return; } if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { new (this) DoubleAPFloat(RHS.Double); return; } llvm_unreachable("Unexpected semantics"); } Storage(Storage &&RHS) { if (usesLayout<IEEEFloat>(*RHS.semantics)) { new (this) IEEEFloat(std::move(RHS.IEEE)); return; } if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { new (this) DoubleAPFloat(std::move(RHS.Double)); return; } llvm_unreachable("Unexpected semantics"); } Storage &operator=(const Storage &RHS) { if (usesLayout<IEEEFloat>(*semantics) && usesLayout<IEEEFloat>(*RHS.semantics)) { IEEE = RHS.IEEE; } else if (usesLayout<DoubleAPFloat>(*semantics) && usesLayout<DoubleAPFloat>(*RHS.semantics)) { Double = RHS.Double; } else if (this != &RHS) { this->~Storage(); new (this) Storage(RHS); } return *this; } Storage &operator=(Storage &&RHS) { if (usesLayout<IEEEFloat>(*semantics) && usesLayout<IEEEFloat>(*RHS.semantics)) { IEEE = std::move(RHS.IEEE); } else if (usesLayout<DoubleAPFloat>(*semantics) && usesLayout<DoubleAPFloat>(*RHS.semantics)) { Double = std::move(RHS.Double); } else if (this != &RHS) { this->~Storage(); new (this) Storage(std::move(RHS)); } return *this; } } U; template <typename T> static bool usesLayout(const fltSemantics &Semantics) { static_assert(std::is_same<T, IEEEFloat>::value || std::is_same<T, DoubleAPFloat>::value, ""); if (std::is_same<T, DoubleAPFloat>::value) { return &Semantics == &PPCDoubleDouble(); } return &Semantics != &PPCDoubleDouble(); } IEEEFloat &getIEEE() { if (usesLayout<IEEEFloat>(*U.semantics)) return U.IEEE; if (usesLayout<DoubleAPFloat>(*U.semantics)) return U.Double.getFirst().U.IEEE; llvm_unreachable("Unexpected semantics"); } const IEEEFloat &getIEEE() const { if (usesLayout<IEEEFloat>(*U.semantics)) return U.IEEE; if (usesLayout<DoubleAPFloat>(*U.semantics)) return U.Double.getFirst().U.IEEE; llvm_unreachable("Unexpected semantics"); } void makeZero(bool Neg) { getIEEE().makeZero(Neg); } void makeInf(bool Neg) { if (usesLayout<IEEEFloat>(*U.semantics)) return U.IEEE.makeInf(Neg); if (usesLayout<DoubleAPFloat>(*U.semantics)) return U.Double.makeInf(Neg); llvm_unreachable("Unexpected semantics"); } void makeNaN(bool SNaN, bool Neg, const APInt *fill) { getIEEE().makeNaN(SNaN, Neg, fill); } void makeLargest(bool Neg) { getIEEE().makeLargest(Neg); } void makeSmallest(bool Neg) { getIEEE().makeSmallest(Neg); } void makeSmallestNormalized(bool Neg) { getIEEE().makeSmallestNormalized(Neg); } // FIXME: This is due to clang 3.3 (or older version) always checks for the // default constructor in an array aggregate initialization, even if no // elements in the array is default initialized. APFloat() : U(IEEEdouble()) { llvm_unreachable("This is a workaround for old clang."); } explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} explicit APFloat(DoubleAPFloat F, const fltSemantics &S) : U(std::move(F), S) {} cmpResult compareAbsoluteValue(const APFloat &RHS) const { assert(&getSemantics() == &RHS.getSemantics()); if (usesLayout<IEEEFloat>(getSemantics())) return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); if (usesLayout<DoubleAPFloat>(getSemantics())) return U.Double.compareAbsoluteValue(RHS.U.Double); llvm_unreachable("Unexpected semantics"); } public: APFloat(const fltSemantics &Semantics) : U(Semantics) {} APFloat(const fltSemantics &Semantics, StringRef S); APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} // TODO: Remove this constructor. This isn't faster than the first one. APFloat(const fltSemantics &Semantics, uninitializedTag) : U(Semantics, uninitialized) {} APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} APFloat(const APFloat &RHS) = default; APFloat(APFloat &&RHS) = default; ~APFloat() = default; bool needsCleanup() const { if (usesLayout<IEEEFloat>(getSemantics())) return U.IEEE.needsCleanup(); if (usesLayout<DoubleAPFloat>(getSemantics())) return U.Double.needsCleanup(); llvm_unreachable("Unexpected semantics"); } /// Factory for Positive and Negative Zero. /// /// \param Negative True iff the number should be negative. static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeZero(Negative); return Val; } /// Factory for Positive and Negative Infinity. /// /// \param Negative True iff the number should be negative. static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeInf(Negative); return Val; } /// Factory for NaN values. /// /// \param Negative - True iff the NaN generated should be negative. /// \param type - The unspecified fill bits for creating the NaN, 0 by /// default. The value is truncated as necessary. static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, unsigned type = 0) { if (type) { APInt fill(64, type); return getQNaN(Sem, Negative, &fill); } else { return getQNaN(Sem, Negative, nullptr); } } /// Factory for QNaN values. static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, const APInt *payload = nullptr) { APFloat Val(Sem, uninitialized); Val.makeNaN(false, Negative, payload); return Val; } /// Factory for SNaN values. static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, const APInt *payload = nullptr) { APFloat Val(Sem, uninitialized); Val.makeNaN(true, Negative, payload); return Val; } /// Returns the largest finite number in the given semantics. /// /// \param Negative - True iff the number should be negative static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeLargest(Negative); return Val; } /// Returns the smallest (by magnitude) finite number in the given semantics. /// Might be denormalized, which implies a relative loss of precision. /// /// \param Negative - True iff the number should be negative static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeSmallest(Negative); return Val; } /// Returns the smallest (by magnitude) normalized finite number in the given /// semantics. /// /// \param Negative - True iff the number should be negative static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeSmallestNormalized(Negative); return Val; } /// Returns a float which is bitcasted from an all one value int. /// /// \param BitWidth - Select float type /// \param isIEEE - If 128 bit number, select between PPC and IEEE static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false); void Profile(FoldingSetNodeID &NID) const { getIEEE().Profile(NID); } opStatus add(const APFloat &RHS, roundingMode RM) { if (usesLayout<IEEEFloat>(getSemantics())) return U.IEEE.add(RHS.U.IEEE, RM); if (usesLayout<DoubleAPFloat>(getSemantics())) return U.Double.add(RHS.U.Double, RM); llvm_unreachable("Unexpected semantics"); } opStatus subtract(const APFloat &RHS, roundingMode RM) { if (usesLayout<IEEEFloat>(getSemantics())) return U.IEEE.subtract(RHS.U.IEEE, RM); if (usesLayout<DoubleAPFloat>(getSemantics())) return U.Double.subtract(RHS.U.Double, RM); llvm_unreachable("Unexpected semantics"); } opStatus multiply(const APFloat &RHS, roundingMode RM) { return getIEEE().multiply(RHS.getIEEE(), RM); } opStatus divide(const APFloat &RHS, roundingMode RM) { return getIEEE().divide(RHS.getIEEE(), RM); } opStatus remainder(const APFloat &RHS) { return getIEEE().remainder(RHS.getIEEE()); } opStatus mod(const APFloat &RHS) { return getIEEE().mod(RHS.getIEEE()); } opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM) { return getIEEE().fusedMultiplyAdd(Multiplicand.getIEEE(), Addend.getIEEE(), RM); } opStatus roundToIntegral(roundingMode RM) { return getIEEE().roundToIntegral(RM); } opStatus next(bool nextDown) { return getIEEE().next(nextDown); } APFloat operator+(const APFloat &RHS) const { return APFloat(getIEEE() + RHS.getIEEE(), getSemantics()); } APFloat operator-(const APFloat &RHS) const { return APFloat(getIEEE() - RHS.getIEEE(), getSemantics()); } APFloat operator*(const APFloat &RHS) const { return APFloat(getIEEE() * RHS.getIEEE(), getSemantics()); } APFloat operator/(const APFloat &RHS) const { return APFloat(getIEEE() / RHS.getIEEE(), getSemantics()); } void changeSign() { getIEEE().changeSign(); } void clearSign() { getIEEE().clearSign(); } void copySign(const APFloat &RHS) { getIEEE().copySign(RHS.getIEEE()); } static APFloat copySign(APFloat Value, const APFloat &Sign) { return APFloat(IEEEFloat::copySign(Value.getIEEE(), Sign.getIEEE()), Value.getSemantics()); } opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo); opStatus convertToInteger(integerPart *Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const { return getIEEE().convertToInteger(Input, Width, IsSigned, RM, IsExact); } opStatus convertToInteger(APSInt &Result, roundingMode RM, bool *IsExact) const { return getIEEE().convertToInteger(Result, RM, IsExact); } opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM) { return getIEEE().convertFromAPInt(Input, IsSigned, RM); } opStatus convertFromSignExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM) { return getIEEE().convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); } opStatus convertFromZeroExtendedInteger(const integerPart *Input, unsigned int InputSize, bool IsSigned, roundingMode RM) { return getIEEE().convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); } opStatus convertFromString(StringRef, roundingMode); APInt bitcastToAPInt() const { return getIEEE().bitcastToAPInt(); } double convertToDouble() const { return getIEEE().convertToDouble(); } float convertToFloat() const { return getIEEE().convertToFloat(); } bool operator==(const APFloat &) const = delete; cmpResult compare(const APFloat &RHS) const { return getIEEE().compare(RHS.getIEEE()); } bool bitwiseIsEqual(const APFloat &RHS) const { return getIEEE().bitwiseIsEqual(RHS.getIEEE()); } unsigned int convertToHexString(char *DST, unsigned int HexDigits, bool UpperCase, roundingMode RM) const { return getIEEE().convertToHexString(DST, HexDigits, UpperCase, RM); } bool isZero() const { return getCategory() == fcZero; } bool isInfinity() const { return getCategory() == fcInfinity; } bool isNaN() const { return getCategory() == fcNaN; } bool isNegative() const { return getIEEE().isNegative(); } bool isDenormal() const { return getIEEE().isDenormal(); } bool isSignaling() const { return getIEEE().isSignaling(); } bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } bool isFinite() const { return !isNaN() && !isInfinity(); } fltCategory getCategory() const { return getIEEE().getCategory(); } const fltSemantics &getSemantics() const { return *U.semantics; } bool isNonZero() const { return !isZero(); } bool isFiniteNonZero() const { return isFinite() && !isZero(); } bool isPosZero() const { return isZero() && !isNegative(); } bool isNegZero() const { return isZero() && isNegative(); } bool isSmallest() const { return getIEEE().isSmallest(); } bool isLargest() const { return getIEEE().isLargest(); } bool isInteger() const { return getIEEE().isInteger(); } APFloat &operator=(const APFloat &RHS) = default; APFloat &operator=(APFloat &&RHS) = default; void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, unsigned FormatMaxPadding = 3) const { return getIEEE().toString(Str, FormatPrecision, FormatMaxPadding); } void print(raw_ostream &) const; void dump() const; bool getExactInverse(APFloat *inv) const { return getIEEE().getExactInverse(inv ? &inv->getIEEE() : nullptr); } // This is for internal test only. // TODO: Remove it after the PPCDoubleDouble transition. const APFloat &getSecondFloat() const { assert(&getSemantics() == &PPCDoubleDouble()); return U.Double.getSecond(); } friend hash_code hash_value(const APFloat &Arg); friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); friend IEEEFloat; friend DoubleAPFloat; }; /// See friend declarations above. /// /// These additional declarations are required in order to compile LLVM with IBM /// xlC compiler. hash_code hash_value(const APFloat &Arg); inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { return APFloat(scalbn(X.getIEEE(), Exp, RM), X.getSemantics()); } /// \brief Equivalent of C standard library function. /// /// While the C standard says Exp is an unspecified value for infinity and nan, /// this returns INT_MAX for infinities, and INT_MIN for NaNs. inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { return APFloat(frexp(X.getIEEE(), Exp, RM), X.getSemantics()); } /// \brief Returns the absolute value of the argument. inline APFloat abs(APFloat X) { X.clearSign(); return X; } /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if /// both are not NaN. If either argument is a NaN, returns the other argument. LLVM_READONLY inline APFloat minnum(const APFloat &A, const APFloat &B) { if (A.isNaN()) return B; if (B.isNaN()) return A; return (B.compare(A) == APFloat::cmpLessThan) ? B : A; } /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if /// both are not NaN. If either argument is a NaN, returns the other argument. LLVM_READONLY inline APFloat maxnum(const APFloat &A, const APFloat &B) { if (A.isNaN()) return B; if (B.isNaN()) return A; return (A.compare(B) == APFloat::cmpLessThan) ? B : A; } } // namespace llvm #endif // LLVM_ADT_APFLOAT_H