// Copyright (c) 2016 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef TEST_OPT_PASS_FIXTURE_H_ #define TEST_OPT_PASS_FIXTURE_H_ #include <iostream> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "effcee/effcee.h" #include "gtest/gtest.h" #include "source/opt/build_module.h" #include "source/opt/pass_manager.h" #include "source/opt/passes.h" #include "source/spirv_validator_options.h" #include "source/util/make_unique.h" #include "spirv-tools/libspirv.hpp" namespace spvtools { namespace opt { // Template class for testing passes. It contains some handy utility methods for // running passes and checking results. // // To write value-Parameterized tests: // using ValueParamTest = PassTest<::testing::TestWithParam<std::string>>; // To use as normal fixture: // using FixtureTest = PassTest<::testing::Test>; template <typename TestT> class PassTest : public TestT { public: PassTest() : consumer_( [](spv_message_level_t, const char*, const spv_position_t&, const char* message) { std::cerr << message << std::endl; }), context_(nullptr), tools_(SPV_ENV_UNIVERSAL_1_3), manager_(new PassManager()), assemble_options_(SpirvTools::kDefaultAssembleOption), disassemble_options_(SpirvTools::kDefaultDisassembleOption) {} // Runs the given |pass| on the binary assembled from the |original|. // Returns a tuple of the optimized binary and the boolean value returned // from pass Process() function. std::tuple<std::vector<uint32_t>, Pass::Status> OptimizeToBinary( Pass* pass, const std::string& original, bool skip_nop) { context_ = std::move(BuildModule(SPV_ENV_UNIVERSAL_1_3, consumer_, original, assemble_options_)); EXPECT_NE(nullptr, context()) << "Assembling failed for shader:\n" << original << std::endl; if (!context()) { return std::make_tuple(std::vector<uint32_t>(), Pass::Status::Failure); } const auto status = pass->Run(context()); std::vector<uint32_t> binary; context()->module()->ToBinary(&binary, skip_nop); return std::make_tuple(binary, status); } // Runs a single pass of class |PassT| on the binary assembled from the // |assembly|. Returns a tuple of the optimized binary and the boolean value // from the pass Process() function. template <typename PassT, typename... Args> std::tuple<std::vector<uint32_t>, Pass::Status> SinglePassRunToBinary( const std::string& assembly, bool skip_nop, Args&&... args) { auto pass = MakeUnique<PassT>(std::forward<Args>(args)...); pass->SetMessageConsumer(consumer_); return OptimizeToBinary(pass.get(), assembly, skip_nop); } // Runs a single pass of class |PassT| on the binary assembled from the // |assembly|, disassembles the optimized binary. Returns a tuple of // disassembly string and the boolean value from the pass Process() function. template <typename PassT, typename... Args> std::tuple<std::string, Pass::Status> SinglePassRunAndDisassemble( const std::string& assembly, bool skip_nop, bool do_validation, Args&&... args) { std::vector<uint32_t> optimized_bin; auto status = Pass::Status::SuccessWithoutChange; std::tie(optimized_bin, status) = SinglePassRunToBinary<PassT>( assembly, skip_nop, std::forward<Args>(args)...); if (do_validation) { spv_target_env target_env = SPV_ENV_UNIVERSAL_1_3; spv_context spvContext = spvContextCreate(target_env); spv_diagnostic diagnostic = nullptr; spv_const_binary_t binary = {optimized_bin.data(), optimized_bin.size()}; spv_result_t error = spvValidateWithOptions( spvContext, ValidatorOptions(), &binary, &diagnostic); EXPECT_EQ(error, 0); if (error != 0) spvDiagnosticPrint(diagnostic); spvDiagnosticDestroy(diagnostic); spvContextDestroy(spvContext); } std::string optimized_asm; EXPECT_TRUE( tools_.Disassemble(optimized_bin, &optimized_asm, disassemble_options_)) << "Disassembling failed for shader:\n" << assembly << std::endl; return std::make_tuple(optimized_asm, status); } // Runs a single pass of class |PassT| on the binary assembled from the // |original| assembly, and checks whether the optimized binary can be // disassembled to the |expected| assembly. Optionally will also validate // the optimized binary. This does *not* involve pass manager. Callers // are suggested to use SCOPED_TRACE() for better messages. template <typename PassT, typename... Args> void SinglePassRunAndCheck(const std::string& original, const std::string& expected, bool skip_nop, bool do_validation, Args&&... args) { std::vector<uint32_t> optimized_bin; auto status = Pass::Status::SuccessWithoutChange; std::tie(optimized_bin, status) = SinglePassRunToBinary<PassT>( original, skip_nop, std::forward<Args>(args)...); // Check whether the pass returns the correct modification indication. EXPECT_NE(Pass::Status::Failure, status); EXPECT_EQ(original == expected, status == Pass::Status::SuccessWithoutChange); if (do_validation) { spv_target_env target_env = SPV_ENV_UNIVERSAL_1_3; spv_context spvContext = spvContextCreate(target_env); spv_diagnostic diagnostic = nullptr; spv_const_binary_t binary = {optimized_bin.data(), optimized_bin.size()}; spv_result_t error = spvValidateWithOptions( spvContext, ValidatorOptions(), &binary, &diagnostic); EXPECT_EQ(error, 0); if (error != 0) spvDiagnosticPrint(diagnostic); spvDiagnosticDestroy(diagnostic); spvContextDestroy(spvContext); } std::string optimized_asm; EXPECT_TRUE( tools_.Disassemble(optimized_bin, &optimized_asm, disassemble_options_)) << "Disassembling failed for shader:\n" << original << std::endl; EXPECT_EQ(expected, optimized_asm); } // Runs a single pass of class |PassT| on the binary assembled from the // |original| assembly, and checks whether the optimized binary can be // disassembled to the |expected| assembly. This does *not* involve pass // manager. Callers are suggested to use SCOPED_TRACE() for better messages. template <typename PassT, typename... Args> void SinglePassRunAndCheck(const std::string& original, const std::string& expected, bool skip_nop, Args&&... args) { SinglePassRunAndCheck<PassT>(original, expected, skip_nop, false, std::forward<Args>(args)...); } // Runs a single pass of class |PassT| on the binary assembled from the // |original| assembly, then runs an Effcee matcher over the disassembled // result, using checks parsed from |original|. Always skips OpNop. // This does *not* involve pass manager. Callers are suggested to use // SCOPED_TRACE() for better messages. template <typename PassT, typename... Args> void SinglePassRunAndMatch(const std::string& original, bool do_validation, Args&&... args) { const bool skip_nop = true; auto pass_result = SinglePassRunAndDisassemble<PassT>( original, skip_nop, do_validation, std::forward<Args>(args)...); auto disassembly = std::get<0>(pass_result); auto match_result = effcee::Match(disassembly, original); EXPECT_EQ(effcee::Result::Status::Ok, match_result.status()) << match_result.message() << "\nChecking result:\n" << disassembly; } // Adds a pass to be run. template <typename PassT, typename... Args> void AddPass(Args&&... args) { manager_->AddPass<PassT>(std::forward<Args>(args)...); } // Renews the pass manager, including clearing all previously added passes. void RenewPassManger() { manager_ = MakeUnique<PassManager>(); manager_->SetMessageConsumer(consumer_); } // Runs the passes added thus far using a pass manager on the binary assembled // from the |original| assembly, and checks whether the optimized binary can // be disassembled to the |expected| assembly. Callers are suggested to use // SCOPED_TRACE() for better messages. void RunAndCheck(const std::string& original, const std::string& expected) { assert(manager_->NumPasses()); context_ = std::move(BuildModule(SPV_ENV_UNIVERSAL_1_3, nullptr, original, assemble_options_)); ASSERT_NE(nullptr, context()); manager_->Run(context()); std::vector<uint32_t> binary; context()->module()->ToBinary(&binary, /* skip_nop = */ false); std::string optimized; EXPECT_TRUE(tools_.Disassemble(binary, &optimized, disassemble_options_)); EXPECT_EQ(expected, optimized); } void SetAssembleOptions(uint32_t assemble_options) { assemble_options_ = assemble_options; } void SetDisassembleOptions(uint32_t disassemble_options) { disassemble_options_ = disassemble_options; } MessageConsumer consumer() { return consumer_; } IRContext* context() { return context_.get(); } void SetMessageConsumer(MessageConsumer msg_consumer) { consumer_ = msg_consumer; } spv_validator_options ValidatorOptions() { return &validator_options_; } private: MessageConsumer consumer_; // Message consumer. std::unique_ptr<IRContext> context_; // IR context SpirvTools tools_; // An instance for calling SPIRV-Tools functionalities. std::unique_ptr<PassManager> manager_; // The pass manager. uint32_t assemble_options_; uint32_t disassemble_options_; spv_validator_options_t validator_options_; }; } // namespace opt } // namespace spvtools #endif // TEST_OPT_PASS_FIXTURE_H_