// Copyright (c) 2018 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASI, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ #include <algorithm> #include <memory> #include <string> #include <vector> #include "source/opt/tree_iterator.h" namespace spvtools { namespace opt { class Loop; class ScalarEvolutionAnalysis; class SEConstantNode; class SERecurrentNode; class SEAddNode; class SEMultiplyNode; class SENegative; class SEValueUnknown; class SECantCompute; // Abstract class representing a node in the scalar evolution DAG. Each node // contains a vector of pointers to its children and each subclass of SENode // implements GetType and an As method to allow casting. SENodes can be hashed // using the SENodeHash functor. The vector of children is sorted when a node is // added. This is important as it allows the hash of X+Y to be the same as Y+X. class SENode { public: enum SENodeType { Constant, RecurrentAddExpr, Add, Multiply, Negative, ValueUnknown, CanNotCompute }; using ChildContainerType = std::vector<SENode*>; explicit SENode(ScalarEvolutionAnalysis* parent_analysis) : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {} virtual SENodeType GetType() const = 0; virtual ~SENode() {} virtual inline void AddChild(SENode* child) { // If this is a constant node, assert. if (AsSEConstantNode()) { assert(false && "Trying to add a child node to a constant!"); } // Find the first point in the vector where |child| is greater than the node // currently in the vector. auto find_first_less_than = [child](const SENode* node) { return child->unique_id_ <= node->unique_id_; }; auto position = std::find_if_not(children_.begin(), children_.end(), find_first_less_than); // Children are sorted so the hashing and equality operator will be the same // for a node with the same children. X+Y should be the same as Y+X. children_.insert(position, child); } // Get the type as an std::string. This is used to represent the node in the // dot output and is used to hash the type as well. std::string AsString() const; // Dump the SENode and its immediate children, if |recurse| is true then it // will recurse through all children to print the DAG starting from this node // as a root. void DumpDot(std::ostream& out, bool recurse = false) const; // Checks if two nodes are the same by hashing them. bool operator==(const SENode& other) const; // Checks if two nodes are not the same by comparing the hashes. bool operator!=(const SENode& other) const; // Return the child node at |index|. inline SENode* GetChild(size_t index) { return children_[index]; } inline const SENode* GetChild(size_t index) const { return children_[index]; } // Iterator to iterate over the child nodes. using iterator = ChildContainerType::iterator; using const_iterator = ChildContainerType::const_iterator; // Iterate over immediate child nodes. iterator begin() { return children_.begin(); } iterator end() { return children_.end(); } // Constant overloads for iterating over immediate child nodes. const_iterator begin() const { return children_.cbegin(); } const_iterator end() const { return children_.cend(); } const_iterator cbegin() { return children_.cbegin(); } const_iterator cend() { return children_.cend(); } // Collect all the recurrent nodes in this SENode std::vector<SERecurrentNode*> CollectRecurrentNodes() { std::vector<SERecurrentNode*> recurrent_nodes{}; if (auto recurrent_node = AsSERecurrentNode()) { recurrent_nodes.push_back(recurrent_node); } for (auto child : GetChildren()) { auto child_recurrent_nodes = child->CollectRecurrentNodes(); recurrent_nodes.insert(recurrent_nodes.end(), child_recurrent_nodes.begin(), child_recurrent_nodes.end()); } return recurrent_nodes; } // Collect all the value unknown nodes in this SENode std::vector<SEValueUnknown*> CollectValueUnknownNodes() { std::vector<SEValueUnknown*> value_unknown_nodes{}; if (auto value_unknown_node = AsSEValueUnknown()) { value_unknown_nodes.push_back(value_unknown_node); } for (auto child : GetChildren()) { auto child_value_unknown_nodes = child->CollectValueUnknownNodes(); value_unknown_nodes.insert(value_unknown_nodes.end(), child_value_unknown_nodes.begin(), child_value_unknown_nodes.end()); } return value_unknown_nodes; } // Iterator to iterate over the entire DAG. Even though we are using the tree // iterator it should still be safe to iterate over. However, nodes with // multiple parents will be visited multiple times, unlike in a tree. using dag_iterator = TreeDFIterator<SENode>; using const_dag_iterator = TreeDFIterator<const SENode>; // Iterate over all child nodes in the graph. dag_iterator graph_begin() { return dag_iterator(this); } dag_iterator graph_end() { return dag_iterator(); } const_dag_iterator graph_begin() const { return graph_cbegin(); } const_dag_iterator graph_end() const { return graph_cend(); } const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); } const_dag_iterator graph_cend() const { return const_dag_iterator(); } // Return the vector of immediate children. const ChildContainerType& GetChildren() const { return children_; } ChildContainerType& GetChildren() { return children_; } // Return true if this node is a cant compute node. bool IsCantCompute() const { return GetType() == CanNotCompute; } // Implements a casting method for each type. #define DeclareCastMethod(target) \ virtual target* As##target() { return nullptr; } \ virtual const target* As##target() const { return nullptr; } DeclareCastMethod(SEConstantNode); DeclareCastMethod(SERecurrentNode); DeclareCastMethod(SEAddNode); DeclareCastMethod(SEMultiplyNode); DeclareCastMethod(SENegative); DeclareCastMethod(SEValueUnknown); DeclareCastMethod(SECantCompute); #undef DeclareCastMethod // Get the analysis which has this node in its cache. inline ScalarEvolutionAnalysis* GetParentAnalysis() const { return parent_analysis_; } protected: ChildContainerType children_; ScalarEvolutionAnalysis* parent_analysis_; // The unique id of this node, assigned on creation by incrementing the static // node count. uint32_t unique_id_; // The number of nodes created. static uint32_t NumberOfNodes; }; // Function object to handle the hashing of SENodes. Hashing algorithm hashes // the type (as a string), the literal value of any constants, and the child // pointers which are assumed to be unique. struct SENodeHash { size_t operator()(const std::unique_ptr<SENode>& node) const; size_t operator()(const SENode* node) const; }; // A node representing a constant integer. class SEConstantNode : public SENode { public: SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value) : SENode(parent_analysis), literal_value_(value) {} SENodeType GetType() const final { return Constant; } int64_t FoldToSingleValue() const { return literal_value_; } SEConstantNode* AsSEConstantNode() override { return this; } const SEConstantNode* AsSEConstantNode() const override { return this; } inline void AddChild(SENode*) final { assert(false && "Attempting to add a child to a constant node!"); } protected: int64_t literal_value_; }; // A node representing a recurrent expression in the code. A recurrent // expression is an expression whose value can be expressed as a linear // expression of the loop iterations. Such as an induction variable. The actual // value of a recurrent expression is coefficent_ * iteration + offset_, hence // an induction variable i=0, i++ becomes a recurrent expression with an offset // of zero and a coefficient of one. class SERecurrentNode : public SENode { public: SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop) : SENode(parent_analysis), loop_(loop) {} SENodeType GetType() const final { return RecurrentAddExpr; } inline void AddCoefficient(SENode* child) { coefficient_ = child; SENode::AddChild(child); } inline void AddOffset(SENode* child) { offset_ = child; SENode::AddChild(child); } inline const SENode* GetCoefficient() const { return coefficient_; } inline SENode* GetCoefficient() { return coefficient_; } inline const SENode* GetOffset() const { return offset_; } inline SENode* GetOffset() { return offset_; } // Return the loop which this recurrent expression is recurring within. const Loop* GetLoop() const { return loop_; } SERecurrentNode* AsSERecurrentNode() override { return this; } const SERecurrentNode* AsSERecurrentNode() const override { return this; } private: SENode* coefficient_; SENode* offset_; const Loop* loop_; }; // A node representing an addition operation between child nodes. class SEAddNode : public SENode { public: explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis) : SENode(parent_analysis) {} SENodeType GetType() const final { return Add; } SEAddNode* AsSEAddNode() override { return this; } const SEAddNode* AsSEAddNode() const override { return this; } }; // A node representing a multiply operation between child nodes. class SEMultiplyNode : public SENode { public: explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis) : SENode(parent_analysis) {} SENodeType GetType() const final { return Multiply; } SEMultiplyNode* AsSEMultiplyNode() override { return this; } const SEMultiplyNode* AsSEMultiplyNode() const override { return this; } }; // A node representing a unary negative operation. class SENegative : public SENode { public: explicit SENegative(ScalarEvolutionAnalysis* parent_analysis) : SENode(parent_analysis) {} SENodeType GetType() const final { return Negative; } SENegative* AsSENegative() override { return this; } const SENegative* AsSENegative() const override { return this; } }; // A node representing a value which we do not know the value of, such as a load // instruction. class SEValueUnknown : public SENode { public: // SEValueUnknowns must come from an instruction |unique_id| is the unique id // of that instruction. This is so we cancompare value unknowns and have a // unique value unknown for each instruction. SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id) : SENode(parent_analysis), result_id_(result_id) {} SENodeType GetType() const final { return ValueUnknown; } SEValueUnknown* AsSEValueUnknown() override { return this; } const SEValueUnknown* AsSEValueUnknown() const override { return this; } inline uint32_t ResultId() const { return result_id_; } private: uint32_t result_id_; }; // A node which we cannot reason about at all. class SECantCompute : public SENode { public: explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis) : SENode(parent_analysis) {} SENodeType GetType() const final { return CanNotCompute; } SECantCompute* AsSECantCompute() override { return this; } const SECantCompute* AsSECantCompute() const override { return this; } }; } // namespace opt } // namespace spvtools #endif // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_