// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_COMP_MOVE_TO_FRONT_H_ #define SOURCE_COMP_MOVE_TO_FRONT_H_ #include <cassert> #include <cstdint> #include <map> #include <set> #include <unordered_map> #include <vector> namespace spvtools { namespace comp { // Log(n) move-to-front implementation. Implements the following functions: // Insert - pushes value to the front of the mtf sequence // (only unique values allowed). // Remove - remove value from the sequence. // ValueFromRank - access value by its 1-indexed rank in the sequence. // RankFromValue - get the rank of the given value in the sequence. // Accessing a value with ValueFromRank or RankFromValue moves the value to the // front of the sequence (rank of 1). // // The implementation is based on an AVL-based order statistic tree. The tree // is ordered by timestamps issued when values are inserted or accessed (recent // values go to the left side of the tree, old values are gradually rotated to // the right side). // // Terminology // rank: 1-indexed rank showing how recently the value was inserted or accessed. // node: handle used internally to access node data. // size: size of the subtree of a node (including the node). // height: distance from a node to the farthest leaf. class MoveToFront { public: explicit MoveToFront(size_t reserve_capacity = 4) { nodes_.reserve(reserve_capacity); // Create NIL node. nodes_.emplace_back(Node()); } virtual ~MoveToFront() = default; // Inserts value in the move-to-front sequence. Does nothing if the value is // already in the sequence. Returns true if insertion was successful. // The inserted value is placed at the front of the sequence (rank 1). bool Insert(uint32_t value); // Removes value from move-to-front sequence. Returns false iff the value // was not found. bool Remove(uint32_t value); // Computes 1-indexed rank of value in the move-to-front sequence and moves // the value to the front. Example: // Before the call: 4 8 2 1 7 // RankFromValue(8) returns 2 // After the call: 8 4 2 1 7 // Returns true iff the value was found in the sequence. bool RankFromValue(uint32_t value, uint32_t* rank); // Returns value corresponding to a 1-indexed rank in the move-to-front // sequence and moves the value to the front. Example: // Before the call: 4 8 2 1 7 // ValueFromRank(2) returns 8 // After the call: 8 4 2 1 7 // Returns true iff the rank is within bounds [1, GetSize()]. bool ValueFromRank(uint32_t rank, uint32_t* value); // Moves the value to the front of the sequence. // Returns false iff value is not in the sequence. bool Promote(uint32_t value); // Returns true iff the move-to-front sequence contains the value. bool HasValue(uint32_t value) const; // Returns the number of elements in the move-to-front sequence. uint32_t GetSize() const { return SizeOf(root_); } protected: // Internal tree data structure uses handles instead of pointers. Leaves and // root parent reference a singleton under handle 0. Although dereferencing // a null pointer is not possible, inappropriate access to handle 0 would // cause an assertion. Handles are not garbage collected if value was // deprecated // with DeprecateValue(). But handles are recycled when a node is // repositioned. // Internal tree data structure node. struct Node { // Timestamp from a logical clock which updates every time the element is // accessed through ValueFromRank or RankFromValue. uint32_t timestamp = 0; // The size of the node's subtree, including the node. // SizeOf(LeftOf(node)) + SizeOf(RightOf(node)) + 1. uint32_t size = 0; // Handles to connected nodes. uint32_t left = 0; uint32_t right = 0; uint32_t parent = 0; // Distance to the farthest leaf. // Leaves have height 0, real nodes at least 1. uint32_t height = 0; // Stored value. uint32_t value = 0; }; // Creates node and sets correct values. Non-NIL nodes should be created only // through this function. If the node with this value has been created // previously // and since orphaned, reuses the old node instead of creating a new one. uint32_t CreateNode(uint32_t timestamp, uint32_t value); // Node accessor methods. Naming is designed to be similar to natural // language as these functions tend to be used in sequences, for example: // ParentOf(LeftestDescendentOf(RightOf(node))) // Returns value of the node referenced by |handle|. uint32_t ValueOf(uint32_t node) const { return nodes_.at(node).value; } // Returns left child of |node|. uint32_t LeftOf(uint32_t node) const { return nodes_.at(node).left; } // Returns right child of |node|. uint32_t RightOf(uint32_t node) const { return nodes_.at(node).right; } // Returns parent of |node|. uint32_t ParentOf(uint32_t node) const { return nodes_.at(node).parent; } // Returns timestamp of |node|. uint32_t TimestampOf(uint32_t node) const { assert(node); return nodes_.at(node).timestamp; } // Returns size of |node|. uint32_t SizeOf(uint32_t node) const { return nodes_.at(node).size; } // Returns height of |node|. uint32_t HeightOf(uint32_t node) const { return nodes_.at(node).height; } // Returns mutable reference to value of |node|. uint32_t& MutableValueOf(uint32_t node) { assert(node); return nodes_.at(node).value; } // Returns mutable reference to handle of left child of |node|. uint32_t& MutableLeftOf(uint32_t node) { assert(node); return nodes_.at(node).left; } // Returns mutable reference to handle of right child of |node|. uint32_t& MutableRightOf(uint32_t node) { assert(node); return nodes_.at(node).right; } // Returns mutable reference to handle of parent of |node|. uint32_t& MutableParentOf(uint32_t node) { assert(node); return nodes_.at(node).parent; } // Returns mutable reference to timestamp of |node|. uint32_t& MutableTimestampOf(uint32_t node) { assert(node); return nodes_.at(node).timestamp; } // Returns mutable reference to size of |node|. uint32_t& MutableSizeOf(uint32_t node) { assert(node); return nodes_.at(node).size; } // Returns mutable reference to height of |node|. uint32_t& MutableHeightOf(uint32_t node) { assert(node); return nodes_.at(node).height; } // Returns true iff |node| is left child of its parent. bool IsLeftChild(uint32_t node) const { assert(node); return LeftOf(ParentOf(node)) == node; } // Returns true iff |node| is right child of its parent. bool IsRightChild(uint32_t node) const { assert(node); return RightOf(ParentOf(node)) == node; } // Returns true iff |node| has no relatives. bool IsOrphan(uint32_t node) const { assert(node); return !ParentOf(node) && !LeftOf(node) && !RightOf(node); } // Returns true iff |node| is in the tree. bool IsInTree(uint32_t node) const { assert(node); return node == root_ || !IsOrphan(node); } // Returns the height difference between right and left subtrees. int BalanceOf(uint32_t node) const { return int(HeightOf(RightOf(node))) - int(HeightOf(LeftOf(node))); } // Updates size and height of the node, assuming that the children have // correct values. void UpdateNode(uint32_t node); // Returns the most LeftOf(LeftOf(... descendent which is not leaf. uint32_t LeftestDescendantOf(uint32_t node) const { uint32_t parent = 0; while (node) { parent = node; node = LeftOf(node); } return parent; } // Returns the most RightOf(RightOf(... descendent which is not leaf. uint32_t RightestDescendantOf(uint32_t node) const { uint32_t parent = 0; while (node) { parent = node; node = RightOf(node); } return parent; } // Inserts node in the tree. The node must be an orphan. void InsertNode(uint32_t node); // Removes node from the tree. May change value_to_node_ if removal uses a // scapegoat. Returns the removed (orphaned) handle for recycling. The // returned handle may not be equal to |node| if scapegoat was used. uint32_t RemoveNode(uint32_t node); // Rotates |node| left, reassigns all connections and returns the node // which takes place of the |node|. uint32_t RotateLeft(const uint32_t node); // Rotates |node| right, reassigns all connections and returns the node // which takes place of the |node|. uint32_t RotateRight(const uint32_t node); // Root node handle. The tree is empty if root_ is 0. uint32_t root_ = 0; // Incremented counters for next timestamp and value. uint32_t next_timestamp_ = 1; // Holds all tree nodes. Indices of this vector are node handles. std::vector<Node> nodes_; // Maps ids to node handles. std::unordered_map<uint32_t, uint32_t> value_to_node_; // Cache for the last accessed value in the sequence. uint32_t last_accessed_value_ = 0; bool last_accessed_value_valid_ = false; }; class MultiMoveToFront { public: // Inserts |value| to sequence with handle |mtf|. // Returns false if |mtf| already has |value|. bool Insert(uint64_t mtf, uint32_t value) { if (GetMtf(mtf).Insert(value)) { val_to_mtfs_[value].insert(mtf); return true; } return false; } // Removes |value| from sequence with handle |mtf|. // Returns false if |mtf| doesn't have |value|. bool Remove(uint64_t mtf, uint32_t value) { if (GetMtf(mtf).Remove(value)) { val_to_mtfs_[value].erase(mtf); return true; } assert(val_to_mtfs_[value].count(mtf) == 0); return false; } // Removes |value| from all sequences which have it. void RemoveFromAll(uint32_t value) { auto it = val_to_mtfs_.find(value); if (it == val_to_mtfs_.end()) return; auto& mtfs_containing_value = it->second; for (uint64_t mtf : mtfs_containing_value) { GetMtf(mtf).Remove(value); } val_to_mtfs_.erase(value); } // Computes rank of |value| in sequence |mtf|. // Returns false if |mtf| doesn't have |value|. bool RankFromValue(uint64_t mtf, uint32_t value, uint32_t* rank) { return GetMtf(mtf).RankFromValue(value, rank); } // Finds |value| with |rank| in sequence |mtf|. // Returns false if |rank| is out of bounds. bool ValueFromRank(uint64_t mtf, uint32_t rank, uint32_t* value) { return GetMtf(mtf).ValueFromRank(rank, value); } // Returns size of |mtf| sequence. uint32_t GetSize(uint64_t mtf) { return GetMtf(mtf).GetSize(); } // Promotes |value| in all sequences which have it. void Promote(uint32_t value) { const auto it = val_to_mtfs_.find(value); if (it == val_to_mtfs_.end()) return; const auto& mtfs_containing_value = it->second; for (uint64_t mtf : mtfs_containing_value) { GetMtf(mtf).Promote(value); } } // Inserts |value| in sequence |mtf| or promotes if it's already there. void InsertOrPromote(uint64_t mtf, uint32_t value) { if (!Insert(mtf, value)) { GetMtf(mtf).Promote(value); } } // Returns if |mtf| sequence has |value|. bool HasValue(uint64_t mtf, uint32_t value) { return GetMtf(mtf).HasValue(value); } private: // Returns actual MoveToFront object corresponding to |handle|. // As multiple operations are often performed consecutively for the same // sequence, the last returned value is cached. MoveToFront& GetMtf(uint64_t handle) { if (!cached_mtf_ || cached_handle_ != handle) { cached_handle_ = handle; cached_mtf_ = &mtfs_[handle]; } return *cached_mtf_; } // Container holding MoveToFront objects. Map key is sequence handle. std::map<uint64_t, MoveToFront> mtfs_; // Container mapping value to sequences which contain that value. std::unordered_map<uint32_t, std::set<uint64_t>> val_to_mtfs_; // Cache for the last accessed sequence. uint64_t cached_handle_ = 0; MoveToFront* cached_mtf_ = nullptr; }; } // namespace comp } // namespace spvtools #endif // SOURCE_COMP_MOVE_TO_FRONT_H_