//===- DAGISelMatcher.cpp - Representation of DAG pattern matcher ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" #include "CodeGenTarget.h" #include "llvm/TableGen/Record.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; void Matcher::dump() const { print(errs(), 0); } void Matcher::print(raw_ostream &OS, unsigned indent) const { printImpl(OS, indent); if (Next) return Next->print(OS, indent); } void Matcher::printOne(raw_ostream &OS) const { printImpl(OS, 0); } /// unlinkNode - Unlink the specified node from this chain. If Other == this, /// we unlink the next pointer and return it. Otherwise we unlink Other from /// the list and return this. Matcher *Matcher::unlinkNode(Matcher *Other) { if (this == Other) return takeNext(); // Scan until we find the predecessor of Other. Matcher *Cur = this; for (; Cur && Cur->getNext() != Other; Cur = Cur->getNext()) /*empty*/; if (Cur == 0) return 0; Cur->takeNext(); Cur->setNext(Other->takeNext()); return this; } /// canMoveBefore - Return true if this matcher is the same as Other, or if /// we can move this matcher past all of the nodes in-between Other and this /// node. Other must be equal to or before this. bool Matcher::canMoveBefore(const Matcher *Other) const { for (;; Other = Other->getNext()) { assert(Other && "Other didn't come before 'this'?"); if (this == Other) return true; // We have to be able to move this node across the Other node. if (!canMoveBeforeNode(Other)) return false; } } /// canMoveBefore - Return true if it is safe to move the current matcher /// across the specified one. bool Matcher::canMoveBeforeNode(const Matcher *Other) const { // We can move simple predicates before record nodes. if (isSimplePredicateNode()) return Other->isSimplePredicateOrRecordNode(); // We can move record nodes across simple predicates. if (isSimplePredicateOrRecordNode()) return isSimplePredicateNode(); // We can't move record nodes across each other etc. return false; } ScopeMatcher::~ScopeMatcher() { for (unsigned i = 0, e = Children.size(); i != e; ++i) delete Children[i]; } CheckPredicateMatcher::CheckPredicateMatcher(const TreePredicateFn &pred) : Matcher(CheckPredicate), Pred(pred.getOrigPatFragRecord()) {} TreePredicateFn CheckPredicateMatcher::getPredicate() const { return TreePredicateFn(Pred); } // printImpl methods. void ScopeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "Scope\n"; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { if (getChild(i) == 0) OS.indent(indent+1) << "NULL POINTER\n"; else getChild(i)->print(OS, indent+2); } } void RecordMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "Record\n"; } void RecordChildMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "RecordChild: " << ChildNo << '\n'; } void RecordMemRefMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "RecordMemRef\n"; } void CaptureGlueInputMatcher::printImpl(raw_ostream &OS, unsigned indent) const{ OS.indent(indent) << "CaptureGlueInput\n"; } void MoveChildMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "MoveChild " << ChildNo << '\n'; } void MoveParentMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "MoveParent\n"; } void CheckSameMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckSame " << MatchNumber << '\n'; } void CheckPatternPredicateMatcher:: printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckPatternPredicate " << Predicate << '\n'; } void CheckPredicateMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckPredicate " << getPredicate().getFnName() << '\n'; } void CheckOpcodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckOpcode " << Opcode.getEnumName() << '\n'; } void SwitchOpcodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "SwitchOpcode: {\n"; for (unsigned i = 0, e = Cases.size(); i != e; ++i) { OS.indent(indent) << "case " << Cases[i].first->getEnumName() << ":\n"; Cases[i].second->print(OS, indent+2); } OS.indent(indent) << "}\n"; } void CheckTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckType " << getEnumName(Type) << ", ResNo=" << ResNo << '\n'; } void SwitchTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "SwitchType: {\n"; for (unsigned i = 0, e = Cases.size(); i != e; ++i) { OS.indent(indent) << "case " << getEnumName(Cases[i].first) << ":\n"; Cases[i].second->print(OS, indent+2); } OS.indent(indent) << "}\n"; } void CheckChildTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckChildType " << ChildNo << " " << getEnumName(Type) << '\n'; } void CheckIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckInteger " << Value << '\n'; } void CheckCondCodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckCondCode ISD::" << CondCodeName << '\n'; } void CheckValueTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckValueType MVT::" << TypeName << '\n'; } void CheckComplexPatMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckComplexPat " << Pattern.getSelectFunc() << '\n'; } void CheckAndImmMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckAndImm " << Value << '\n'; } void CheckOrImmMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckOrImm " << Value << '\n'; } void CheckFoldableChainNodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckFoldableChainNode\n"; } void EmitIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitInteger " << Val << " VT=" << VT << '\n'; } void EmitStringIntegerMatcher:: printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitStringInteger " << Val << " VT=" << VT << '\n'; } void EmitRegisterMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitRegister "; if (Reg) OS << Reg->getName(); else OS << "zero_reg"; OS << " VT=" << VT << '\n'; } void EmitConvertToTargetMatcher:: printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitConvertToTarget " << Slot << '\n'; } void EmitMergeInputChainsMatcher:: printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitMergeInputChains <todo: args>\n"; } void EmitCopyToRegMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitCopyToReg <todo: args>\n"; } void EmitNodeXFormMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitNodeXForm " << NodeXForm->getName() << " Slot=" << Slot << '\n'; } void EmitNodeMatcherCommon::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent); OS << (isa<MorphNodeToMatcher>(this) ? "MorphNodeTo: " : "EmitNode: ") << OpcodeName << ": <todo flags> "; for (unsigned i = 0, e = VTs.size(); i != e; ++i) OS << ' ' << getEnumName(VTs[i]); OS << '('; for (unsigned i = 0, e = Operands.size(); i != e; ++i) OS << Operands[i] << ' '; OS << ")\n"; } void MarkGlueResultsMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "MarkGlueResults <todo: args>\n"; } void CompleteMatchMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CompleteMatch <todo args>\n"; OS.indent(indent) << "Src = " << *Pattern.getSrcPattern() << "\n"; OS.indent(indent) << "Dst = " << *Pattern.getDstPattern() << "\n"; } // getHashImpl Implementation. unsigned CheckPatternPredicateMatcher::getHashImpl() const { return HashString(Predicate); } unsigned CheckPredicateMatcher::getHashImpl() const { return HashString(getPredicate().getFnName()); } unsigned CheckOpcodeMatcher::getHashImpl() const { return HashString(Opcode.getEnumName()); } unsigned CheckCondCodeMatcher::getHashImpl() const { return HashString(CondCodeName); } unsigned CheckValueTypeMatcher::getHashImpl() const { return HashString(TypeName); } unsigned EmitStringIntegerMatcher::getHashImpl() const { return HashString(Val) ^ VT; } template<typename It> static unsigned HashUnsigneds(It I, It E) { unsigned Result = 0; for (; I != E; ++I) Result = (Result<<3) ^ *I; return Result; } unsigned EmitMergeInputChainsMatcher::getHashImpl() const { return HashUnsigneds(ChainNodes.begin(), ChainNodes.end()); } bool CheckOpcodeMatcher::isEqualImpl(const Matcher *M) const { // Note: pointer equality isn't enough here, we have to check the enum names // to ensure that the nodes are for the same opcode. return cast<CheckOpcodeMatcher>(M)->Opcode.getEnumName() == Opcode.getEnumName(); } bool EmitNodeMatcherCommon::isEqualImpl(const Matcher *m) const { const EmitNodeMatcherCommon *M = cast<EmitNodeMatcherCommon>(m); return M->OpcodeName == OpcodeName && M->VTs == VTs && M->Operands == Operands && M->HasChain == HasChain && M->HasInGlue == HasInGlue && M->HasOutGlue == HasOutGlue && M->HasMemRefs == HasMemRefs && M->NumFixedArityOperands == NumFixedArityOperands; } unsigned EmitNodeMatcherCommon::getHashImpl() const { return (HashString(OpcodeName) << 4) | Operands.size(); } unsigned MarkGlueResultsMatcher::getHashImpl() const { return HashUnsigneds(GlueResultNodes.begin(), GlueResultNodes.end()); } unsigned CompleteMatchMatcher::getHashImpl() const { return HashUnsigneds(Results.begin(), Results.end()) ^ ((unsigned)(intptr_t)&Pattern << 8); } // isContradictoryImpl Implementations. static bool TypesAreContradictory(MVT::SimpleValueType T1, MVT::SimpleValueType T2) { // If the two types are the same, then they are the same, so they don't // contradict. if (T1 == T2) return false; // If either type is about iPtr, then they don't conflict unless the other // one is not a scalar integer type. if (T1 == MVT::iPTR) return !MVT(T2).isInteger() || MVT(T2).isVector(); if (T2 == MVT::iPTR) return !MVT(T1).isInteger() || MVT(T1).isVector(); // Otherwise, they are two different non-iPTR types, they conflict. return true; } bool CheckOpcodeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckOpcodeMatcher *COM = dyn_cast<CheckOpcodeMatcher>(M)) { // One node can't have two different opcodes! // Note: pointer equality isn't enough here, we have to check the enum names // to ensure that the nodes are for the same opcode. return COM->getOpcode().getEnumName() != getOpcode().getEnumName(); } // If the node has a known type, and if the type we're checking for is // different, then we know they contradict. For example, a check for // ISD::STORE will never be true at the same time a check for Type i32 is. if (const CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(M)) { // If checking for a result the opcode doesn't have, it can't match. if (CT->getResNo() >= getOpcode().getNumResults()) return true; MVT::SimpleValueType NodeType = getOpcode().getKnownType(CT->getResNo()); if (NodeType != MVT::Other) return TypesAreContradictory(NodeType, CT->getType()); } return false; } bool CheckTypeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(M)) return TypesAreContradictory(getType(), CT->getType()); return false; } bool CheckChildTypeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckChildTypeMatcher *CC = dyn_cast<CheckChildTypeMatcher>(M)) { // If the two checks are about different nodes, we don't know if they // conflict! if (CC->getChildNo() != getChildNo()) return false; return TypesAreContradictory(getType(), CC->getType()); } return false; } bool CheckIntegerMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckIntegerMatcher *CIM = dyn_cast<CheckIntegerMatcher>(M)) return CIM->getValue() != getValue(); return false; } bool CheckValueTypeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckValueTypeMatcher *CVT = dyn_cast<CheckValueTypeMatcher>(M)) return CVT->getTypeName() != getTypeName(); return false; }