//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the CodeGenDAGPatterns class, which is used to read and // represent the patterns present in a .td file for instructions. // //===----------------------------------------------------------------------===// #ifndef CODEGEN_DAGPATTERNS_H #define CODEGEN_DAGPATTERNS_H #include "CodeGenTarget.h" #include "CodeGenIntrinsics.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include <set> #include <algorithm> #include <vector> #include <map> namespace llvm { class Record; class Init; class ListInit; class DagInit; class SDNodeInfo; class TreePattern; class TreePatternNode; class CodeGenDAGPatterns; class ComplexPattern; /// EEVT::DAGISelGenValueType - These are some extended forms of /// MVT::SimpleValueType that we use as lattice values during type inference. /// The existing MVT iAny, fAny and vAny types suffice to represent /// arbitrary integer, floating-point, and vector types, so only an unknown /// value is needed. namespace EEVT { /// TypeSet - This is either empty if it's completely unknown, or holds a set /// of types. It is used during type inference because register classes can /// have multiple possible types and we don't know which one they get until /// type inference is complete. /// /// TypeSet can have three states: /// Vector is empty: The type is completely unknown, it can be any valid /// target type. /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one /// of those types only. /// Vector has one concrete type: The type is completely known. /// class TypeSet { SmallVector<MVT::SimpleValueType, 4> TypeVec; public: TypeSet() {} TypeSet(MVT::SimpleValueType VT, TreePattern &TP); TypeSet(const std::vector<MVT::SimpleValueType> &VTList); bool isCompletelyUnknown() const { return TypeVec.empty(); } bool isConcrete() const { if (TypeVec.size() != 1) return false; unsigned char T = TypeVec[0]; (void)T; assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny); return true; } MVT::SimpleValueType getConcrete() const { assert(isConcrete() && "Type isn't concrete yet"); return (MVT::SimpleValueType)TypeVec[0]; } bool isDynamicallyResolved() const { return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny; } const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const { assert(!TypeVec.empty() && "Not a type list!"); return TypeVec; } bool isVoid() const { return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid; } /// hasIntegerTypes - Return true if this TypeSet contains any integer value /// types. bool hasIntegerTypes() const; /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or /// a floating point value type. bool hasFloatingPointTypes() const; /// hasVectorTypes - Return true if this TypeSet contains a vector value /// type. bool hasVectorTypes() const; /// getName() - Return this TypeSet as a string. std::string getName() const; /// MergeInTypeInfo - This merges in type information from the specified /// argument. If 'this' changes, it returns true. If the two types are /// contradictory (e.g. merge f32 into i32) then this throws an exception. bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP); bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) { return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP); } /// Force this type list to only contain integer types. bool EnforceInteger(TreePattern &TP); /// Force this type list to only contain floating point types. bool EnforceFloatingPoint(TreePattern &TP); /// EnforceScalar - Remove all vector types from this type list. bool EnforceScalar(TreePattern &TP); /// EnforceVector - Remove all non-vector types from this type list. bool EnforceVector(TreePattern &TP); /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update /// this an other based on this information. bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP); /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type /// whose element is VT. bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP); /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to /// be a vector type VT. bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP); bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; } bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; } private: /// FillWithPossibleTypes - Set to all legal types and return true, only /// valid on completely unknown type sets. If Pred is non-null, only MVTs /// that pass the predicate are added. bool FillWithPossibleTypes(TreePattern &TP, bool (*Pred)(MVT::SimpleValueType) = 0, const char *PredicateName = 0); }; } /// Set type used to track multiply used variables in patterns typedef std::set<std::string> MultipleUseVarSet; /// SDTypeConstraint - This is a discriminated union of constraints, /// corresponding to the SDTypeConstraint tablegen class in Target.td. struct SDTypeConstraint { SDTypeConstraint(Record *R); unsigned OperandNo; // The operand # this constraint applies to. enum { SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, SDTCisSubVecOfVec } ConstraintType; union { // The discriminated union. struct { MVT::SimpleValueType VT; } SDTCisVT_Info; struct { unsigned OtherOperandNum; } SDTCisSameAs_Info; struct { unsigned OtherOperandNum; } SDTCisVTSmallerThanOp_Info; struct { unsigned BigOperandNum; } SDTCisOpSmallerThanOp_Info; struct { unsigned OtherOperandNum; } SDTCisEltOfVec_Info; struct { unsigned OtherOperandNum; } SDTCisSubVecOfVec_Info; } x; /// ApplyTypeConstraint - Given a node in a pattern, apply this type /// constraint to the nodes operands. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, TreePattern &TP) const; }; /// SDNodeInfo - One of these records is created for each SDNode instance in /// the target .td file. This represents the various dag nodes we will be /// processing. class SDNodeInfo { Record *Def; std::string EnumName; std::string SDClassName; unsigned Properties; unsigned NumResults; int NumOperands; std::vector<SDTypeConstraint> TypeConstraints; public: SDNodeInfo(Record *R); // Parse the specified record. unsigned getNumResults() const { return NumResults; } /// getNumOperands - This is the number of operands required or -1 if /// variadic. int getNumOperands() const { return NumOperands; } Record *getRecord() const { return Def; } const std::string &getEnumName() const { return EnumName; } const std::string &getSDClassName() const { return SDClassName; } const std::vector<SDTypeConstraint> &getTypeConstraints() const { return TypeConstraints; } /// getKnownType - If the type constraints on this node imply a fixed type /// (e.g. all stores return void, etc), then return it as an /// MVT::SimpleValueType. Otherwise, return MVT::Other. MVT::SimpleValueType getKnownType(unsigned ResNo) const; /// hasProperty - Return true if this node has the specified property. /// bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } /// ApplyTypeConstraints - Given a node in a pattern, apply the type /// constraints for this node to the operands of the node. This returns /// true if it makes a change, false otherwise. If a type contradiction is /// found, throw an exception. bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const { bool MadeChange = false; for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); return MadeChange; } }; /// TreePredicateFn - This is an abstraction that represents the predicates on /// a PatFrag node. This is a simple one-word wrapper around a pointer to /// provide nice accessors. class TreePredicateFn { /// PatFragRec - This is the TreePattern for the PatFrag that we /// originally came from. TreePattern *PatFragRec; public: /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. TreePredicateFn(TreePattern *N); TreePattern *getOrigPatFragRecord() const { return PatFragRec; } /// isAlwaysTrue - Return true if this is a noop predicate. bool isAlwaysTrue() const; bool isImmediatePattern() const { return !getImmCode().empty(); } /// getImmediatePredicateCode - Return the code that evaluates this pattern if /// this is an immediate predicate. It is an error to call this on a /// non-immediate pattern. std::string getImmediatePredicateCode() const { std::string Result = getImmCode(); assert(!Result.empty() && "Isn't an immediate pattern!"); return Result; } bool operator==(const TreePredicateFn &RHS) const { return PatFragRec == RHS.PatFragRec; } bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } /// Return the name to use in the generated code to reference this, this is /// "Predicate_foo" if from a pattern fragment "foo". std::string getFnName() const; /// getCodeToRunOnSDNode - Return the code for the function body that /// evaluates this predicate. The argument is expected to be in "Node", /// not N. This handles casting and conversion to a concrete node type as /// appropriate. std::string getCodeToRunOnSDNode() const; private: std::string getPredCode() const; std::string getImmCode() const; }; /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped /// patterns), and as such should be ref counted. We currently just leak all /// TreePatternNode objects! class TreePatternNode { /// The type of each node result. Before and during type inference, each /// result may be a set of possible types. After (successful) type inference, /// each is a single concrete type. SmallVector<EEVT::TypeSet, 1> Types; /// Operator - The Record for the operator if this is an interior node (not /// a leaf). Record *Operator; /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. /// Init *Val; /// Name - The name given to this node with the :$foo notation. /// std::string Name; /// PredicateFns - The predicate functions to execute on this node to check /// for a match. If this list is empty, no predicate is involved. std::vector<TreePredicateFn> PredicateFns; /// TransformFn - The transformation function to execute on this node before /// it can be substituted into the resulting instruction on a pattern match. Record *TransformFn; std::vector<TreePatternNode*> Children; public: TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch, unsigned NumResults) : Operator(Op), Val(0), TransformFn(0), Children(Ch) { Types.resize(NumResults); } TreePatternNode(Init *val, unsigned NumResults) // leaf ctor : Operator(0), Val(val), TransformFn(0) { Types.resize(NumResults); } ~TreePatternNode(); const std::string &getName() const { return Name; } void setName(StringRef N) { Name.assign(N.begin(), N.end()); } bool isLeaf() const { return Val != 0; } // Type accessors. unsigned getNumTypes() const { return Types.size(); } MVT::SimpleValueType getType(unsigned ResNo) const { return Types[ResNo].getConcrete(); } const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; } const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; } EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; } void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; } bool hasTypeSet(unsigned ResNo) const { return Types[ResNo].isConcrete(); } bool isTypeCompletelyUnknown(unsigned ResNo) const { return Types[ResNo].isCompletelyUnknown(); } bool isTypeDynamicallyResolved(unsigned ResNo) const { return Types[ResNo].isDynamicallyResolved(); } Init *getLeafValue() const { assert(isLeaf()); return Val; } Record *getOperator() const { assert(!isLeaf()); return Operator; } unsigned getNumChildren() const { return Children.size(); } TreePatternNode *getChild(unsigned N) const { return Children[N]; } void setChild(unsigned i, TreePatternNode *N) { Children[i] = N; } /// hasChild - Return true if N is any of our children. bool hasChild(const TreePatternNode *N) const { for (unsigned i = 0, e = Children.size(); i != e; ++i) if (Children[i] == N) return true; return false; } bool hasAnyPredicate() const { return !PredicateFns.empty(); } const std::vector<TreePredicateFn> &getPredicateFns() const { return PredicateFns; } void clearPredicateFns() { PredicateFns.clear(); } void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); PredicateFns = Fns; } void addPredicateFn(const TreePredicateFn &Fn) { assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) == PredicateFns.end()) PredicateFns.push_back(Fn); } Record *getTransformFn() const { return TransformFn; } void setTransformFn(Record *Fn) { TransformFn = Fn; } /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the /// CodeGenIntrinsic information for it, otherwise return a null pointer. const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, /// return the ComplexPattern information, otherwise return null. const ComplexPattern * getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; /// NodeHasProperty - Return true if this node has the specified property. bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; /// TreeHasProperty - Return true if any node in this tree has the specified /// property. bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is /// marked isCommutative. bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; void print(raw_ostream &OS) const; void dump() const; public: // Higher level manipulation routines. /// clone - Return a new copy of this tree. /// TreePatternNode *clone() const; /// RemoveAllTypes - Recursively strip all the types of this tree. void RemoveAllTypes(); /// isIsomorphicTo - Return true if this node is recursively isomorphic to /// the specified node. For this comparison, all of the state of the node /// is considered, except for the assigned name. Nodes with differing names /// that are otherwise identical are considered isomorphic. bool isIsomorphicTo(const TreePatternNode *N, const MultipleUseVarSet &DepVars) const; /// SubstituteFormalArguments - Replace the formal arguments in this tree /// with actual values specified by ArgMap. void SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap); /// InlinePatternFragments - If this pattern refers to any pattern /// fragments, inline them into place, giving us a pattern without any /// PatFrag references. TreePatternNode *InlinePatternFragments(TreePattern &TP); /// ApplyTypeConstraints - Apply all of the type constraints relevant to /// this node and its children in the tree. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); /// UpdateNodeType - Set the node type of N to VT if VT contains /// information. If N already contains a conflicting type, then throw an /// exception. This returns true if any information was updated. /// bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy, TreePattern &TP) { return Types[ResNo].MergeInTypeInfo(InTy, TP); } bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, TreePattern &TP) { return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP); } /// ContainsUnresolvedType - Return true if this tree contains any /// unresolved types. bool ContainsUnresolvedType() const { for (unsigned i = 0, e = Types.size(); i != e; ++i) if (!Types[i].isConcrete()) return true; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (getChild(i)->ContainsUnresolvedType()) return true; return false; } /// canPatternMatch - If it is impossible for this pattern to match on this /// target, fill in Reason and return false. Otherwise, return true. bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); }; inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { TPN.print(OS); return OS; } /// TreePattern - Represent a pattern, used for instructions, pattern /// fragments, etc. /// class TreePattern { /// Trees - The list of pattern trees which corresponds to this pattern. /// Note that PatFrag's only have a single tree. /// std::vector<TreePatternNode*> Trees; /// NamedNodes - This is all of the nodes that have names in the trees in this /// pattern. StringMap<SmallVector<TreePatternNode*,1> > NamedNodes; /// TheRecord - The actual TableGen record corresponding to this pattern. /// Record *TheRecord; /// Args - This is a list of all of the arguments to this pattern (for /// PatFrag patterns), which are the 'node' markers in this pattern. std::vector<std::string> Args; /// CDP - the top-level object coordinating this madness. /// CodeGenDAGPatterns &CDP; /// isInputPattern - True if this is an input pattern, something to match. /// False if this is an output pattern, something to emit. bool isInputPattern; public: /// TreePattern constructor - Parse the specified DagInits into the /// current record. TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, CodeGenDAGPatterns &ise); TreePattern(Record *TheRec, DagInit *Pat, bool isInput, CodeGenDAGPatterns &ise); TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, CodeGenDAGPatterns &ise); /// getTrees - Return the tree patterns which corresponds to this pattern. /// const std::vector<TreePatternNode*> &getTrees() const { return Trees; } unsigned getNumTrees() const { return Trees.size(); } TreePatternNode *getTree(unsigned i) const { return Trees[i]; } TreePatternNode *getOnlyTree() const { assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); return Trees[0]; } const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() { if (NamedNodes.empty()) ComputeNamedNodes(); return NamedNodes; } /// getRecord - Return the actual TableGen record corresponding to this /// pattern. /// Record *getRecord() const { return TheRecord; } unsigned getNumArgs() const { return Args.size(); } const std::string &getArgName(unsigned i) const { assert(i < Args.size() && "Argument reference out of range!"); return Args[i]; } std::vector<std::string> &getArgList() { return Args; } CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } /// InlinePatternFragments - If this pattern refers to any pattern /// fragments, inline them into place, giving us a pattern without any /// PatFrag references. void InlinePatternFragments() { for (unsigned i = 0, e = Trees.size(); i != e; ++i) Trees[i] = Trees[i]->InlinePatternFragments(*this); } /// InferAllTypes - Infer/propagate as many types throughout the expression /// patterns as possible. Return true if all types are inferred, false /// otherwise. Throw an exception if a type contradiction is found. bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *NamedTypes=0); /// error - Throw an exception, prefixing it with information about this /// pattern. void error(const std::string &Msg) const; void print(raw_ostream &OS) const; void dump() const; private: TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName); void ComputeNamedNodes(); void ComputeNamedNodes(TreePatternNode *N); }; /// DAGDefaultOperand - One of these is created for each PredicateOperand /// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field. struct DAGDefaultOperand { std::vector<TreePatternNode*> DefaultOps; }; class DAGInstruction { TreePattern *Pattern; std::vector<Record*> Results; std::vector<Record*> Operands; std::vector<Record*> ImpResults; TreePatternNode *ResultPattern; public: DAGInstruction(TreePattern *TP, const std::vector<Record*> &results, const std::vector<Record*> &operands, const std::vector<Record*> &impresults) : Pattern(TP), Results(results), Operands(operands), ImpResults(impresults), ResultPattern(0) {} const TreePattern *getPattern() const { return Pattern; } unsigned getNumResults() const { return Results.size(); } unsigned getNumOperands() const { return Operands.size(); } unsigned getNumImpResults() const { return ImpResults.size(); } const std::vector<Record*>& getImpResults() const { return ImpResults; } void setResultPattern(TreePatternNode *R) { ResultPattern = R; } Record *getResult(unsigned RN) const { assert(RN < Results.size()); return Results[RN]; } Record *getOperand(unsigned ON) const { assert(ON < Operands.size()); return Operands[ON]; } Record *getImpResult(unsigned RN) const { assert(RN < ImpResults.size()); return ImpResults[RN]; } TreePatternNode *getResultPattern() const { return ResultPattern; } }; /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns /// processed to produce isel. class PatternToMatch { public: PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNode *src, TreePatternNode *dst, const std::vector<Record*> &dstregs, unsigned complexity, unsigned uid) : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst), Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {} Record *SrcRecord; // Originating Record for the pattern. ListInit *Predicates; // Top level predicate conditions to match. TreePatternNode *SrcPattern; // Source pattern to match. TreePatternNode *DstPattern; // Resulting pattern. std::vector<Record*> Dstregs; // Physical register defs being matched. unsigned AddedComplexity; // Add to matching pattern complexity. unsigned ID; // Unique ID for the record. Record *getSrcRecord() const { return SrcRecord; } ListInit *getPredicates() const { return Predicates; } TreePatternNode *getSrcPattern() const { return SrcPattern; } TreePatternNode *getDstPattern() const { return DstPattern; } const std::vector<Record*> &getDstRegs() const { return Dstregs; } unsigned getAddedComplexity() const { return AddedComplexity; } std::string getPredicateCheck() const; /// Compute the complexity metric for the input pattern. This roughly /// corresponds to the number of nodes that are covered. unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const; }; // Deterministic comparison of Record*. struct RecordPtrCmp { bool operator()(const Record *LHS, const Record *RHS) const; }; class CodeGenDAGPatterns { RecordKeeper &Records; CodeGenTarget Target; std::vector<CodeGenIntrinsic> Intrinsics; std::vector<CodeGenIntrinsic> TgtIntrinsics; std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes; std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms; std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns; std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments; std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands; std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions; // Specific SDNode definitions: Record *intrinsic_void_sdnode; Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; /// PatternsToMatch - All of the things we are matching on the DAG. The first /// value is the pattern to match, the second pattern is the result to /// emit. std::vector<PatternToMatch> PatternsToMatch; public: CodeGenDAGPatterns(RecordKeeper &R); ~CodeGenDAGPatterns(); CodeGenTarget &getTargetInfo() { return Target; } const CodeGenTarget &getTargetInfo() const { return Target; } Record *getSDNodeNamed(const std::string &Name) const; const SDNodeInfo &getSDNodeInfo(Record *R) const { assert(SDNodes.count(R) && "Unknown node!"); return SDNodes.find(R)->second; } // Node transformation lookups. typedef std::pair<Record*, std::string> NodeXForm; const NodeXForm &getSDNodeTransform(Record *R) const { assert(SDNodeXForms.count(R) && "Invalid transform!"); return SDNodeXForms.find(R)->second; } typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator nx_iterator; nx_iterator nx_begin() const { return SDNodeXForms.begin(); } nx_iterator nx_end() const { return SDNodeXForms.end(); } const ComplexPattern &getComplexPattern(Record *R) const { assert(ComplexPatterns.count(R) && "Unknown addressing mode!"); return ComplexPatterns.find(R)->second; } const CodeGenIntrinsic &getIntrinsic(Record *R) const { for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) if (Intrinsics[i].TheDef == R) return Intrinsics[i]; for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; assert(0 && "Unknown intrinsic!"); abort(); } const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { if (IID-1 < Intrinsics.size()) return Intrinsics[IID-1]; if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) return TgtIntrinsics[IID-Intrinsics.size()-1]; assert(0 && "Bad intrinsic ID!"); abort(); } unsigned getIntrinsicID(Record *R) const { for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) if (Intrinsics[i].TheDef == R) return i; for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); assert(0 && "Unknown intrinsic!"); abort(); } const DAGDefaultOperand &getDefaultOperand(Record *R) const { assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!"); return DefaultOperands.find(R)->second; } // Pattern Fragment information. TreePattern *getPatternFragment(Record *R) const { assert(PatternFragments.count(R) && "Invalid pattern fragment request!"); return PatternFragments.find(R)->second; } TreePattern *getPatternFragmentIfRead(Record *R) const { if (!PatternFragments.count(R)) return 0; return PatternFragments.find(R)->second; } typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator pf_iterator; pf_iterator pf_begin() const { return PatternFragments.begin(); } pf_iterator pf_end() const { return PatternFragments.end(); } // Patterns to match information. typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } ptm_iterator ptm_end() const { return PatternsToMatch.end(); } const DAGInstruction &getInstruction(Record *R) const { assert(Instructions.count(R) && "Unknown instruction!"); return Instructions.find(R)->second; } Record *get_intrinsic_void_sdnode() const { return intrinsic_void_sdnode; } Record *get_intrinsic_w_chain_sdnode() const { return intrinsic_w_chain_sdnode; } Record *get_intrinsic_wo_chain_sdnode() const { return intrinsic_wo_chain_sdnode; } bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } private: void ParseNodeInfo(); void ParseNodeTransforms(); void ParseComplexPatterns(); void ParsePatternFragments(); void ParseDefaultOperands(); void ParseInstructions(); void ParsePatterns(); void InferInstructionFlags(); void GenerateVariants(); void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM); void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, std::map<std::string, TreePatternNode*> &InstInputs, std::map<std::string, TreePatternNode*> &InstResults, std::vector<Record*> &InstImpResults); }; } // end namespace llvm #endif