//===- LoopInstSimplify.cpp - Loop Instruction Simplification Pass --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs lightweight instruction simplification on loop bodies. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-instsimplify" #include "llvm/Instructions.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumSimplified, "Number of redundant instructions simplified"); namespace { class LoopInstSimplify : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopInstSimplify() : LoopPass(ID) { initializeLoopInstSimplifyPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop*, LPPassManager&); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<LoopInfo>(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LCSSAID); AU.addPreserved("scalar-evolution"); } }; } char LoopInstSimplify::ID = 0; INITIALIZE_PASS_BEGIN(LoopInstSimplify, "loop-instsimplify", "Simplify instructions in loops", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(LCSSA) INITIALIZE_PASS_END(LoopInstSimplify, "loop-instsimplify", "Simplify instructions in loops", false, false) Pass *llvm::createLoopInstSimplifyPass() { return new LoopInstSimplify(); } bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>(); LoopInfo *LI = &getAnalysis<LoopInfo>(); const TargetData *TD = getAnalysisIfAvailable<TargetData>(); SmallVector<BasicBlock*, 8> ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); array_pod_sort(ExitBlocks.begin(), ExitBlocks.end()); SmallPtrSet<const Instruction*, 8> S1, S2, *ToSimplify = &S1, *Next = &S2; // The bit we are stealing from the pointer represents whether this basic // block is the header of a subloop, in which case we only process its phis. typedef PointerIntPair<BasicBlock*, 1> WorklistItem; SmallVector<WorklistItem, 16> VisitStack; SmallPtrSet<BasicBlock*, 32> Visited; bool Changed = false; bool LocalChanged; do { LocalChanged = false; VisitStack.clear(); Visited.clear(); VisitStack.push_back(WorklistItem(L->getHeader(), false)); while (!VisitStack.empty()) { WorklistItem Item = VisitStack.pop_back_val(); BasicBlock *BB = Item.getPointer(); bool IsSubloopHeader = Item.getInt(); // Simplify instructions in the current basic block. for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { Instruction *I = BI++; // The first time through the loop ToSimplify is empty and we try to // simplify all instructions. On later iterations ToSimplify is not // empty and we only bother simplifying instructions that are in it. if (!ToSimplify->empty() && !ToSimplify->count(I)) continue; // Don't bother simplifying unused instructions. if (!I->use_empty()) { Value *V = SimplifyInstruction(I, TD, DT); if (V && LI->replacementPreservesLCSSAForm(I, V)) { // Mark all uses for resimplification next time round the loop. for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) Next->insert(cast<Instruction>(*UI)); I->replaceAllUsesWith(V); LocalChanged = true; ++NumSimplified; } } LocalChanged |= RecursivelyDeleteTriviallyDeadInstructions(I); if (IsSubloopHeader && !isa<PHINode>(I)) break; } // Add all successors to the worklist, except for loop exit blocks and the // bodies of subloops. We visit the headers of loops so that we can process // their phis, but we contract the rest of the subloop body and only follow // edges leading back to the original loop. for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { BasicBlock *SuccBB = *SI; if (!Visited.insert(SuccBB)) continue; const Loop *SuccLoop = LI->getLoopFor(SuccBB); if (SuccLoop && SuccLoop->getHeader() == SuccBB && L->contains(SuccLoop)) { VisitStack.push_back(WorklistItem(SuccBB, true)); SmallVector<BasicBlock*, 8> SubLoopExitBlocks; SuccLoop->getExitBlocks(SubLoopExitBlocks); for (unsigned i = 0; i < SubLoopExitBlocks.size(); ++i) { BasicBlock *ExitBB = SubLoopExitBlocks[i]; if (LI->getLoopFor(ExitBB) == L && Visited.insert(ExitBB)) VisitStack.push_back(WorklistItem(ExitBB, false)); } continue; } bool IsExitBlock = std::binary_search(ExitBlocks.begin(), ExitBlocks.end(), SuccBB); if (IsExitBlock) continue; VisitStack.push_back(WorklistItem(SuccBB, false)); } } // Place the list of instructions to simplify on the next loop iteration // into ToSimplify. std::swap(ToSimplify, Next); Next->clear(); Changed |= LocalChanged; } while (LocalChanged); return Changed; }