//===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This module provides means for calculating a maximum spanning tree for a // given set of weighted edges. The type parameter T is the type of a node. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H #define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H #include "llvm/BasicBlock.h" #include "llvm/ADT/EquivalenceClasses.h" #include <vector> #include <algorithm> namespace llvm { /// MaximumSpanningTree - A MST implementation. /// The type parameter T determines the type of the nodes of the graph. template <typename T> class MaximumSpanningTree { // A comparing class for comparing weighted edges. template <typename CT> struct EdgeWeightCompare { bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X, typename MaximumSpanningTree<CT>::EdgeWeight Y) const { if (X.second > Y.second) return true; if (X.second < Y.second) return false; if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.first)) { if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.first)) { if (BBX->size() > BBY->size()) return true; if (BBX->size() < BBY->size()) return false; } } if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.second)) { if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.second)) { if (BBX->size() > BBY->size()) return true; if (BBX->size() < BBY->size()) return false; } } return false; } }; public: typedef std::pair<const T*, const T*> Edge; typedef std::pair<Edge, double> EdgeWeight; typedef std::vector<EdgeWeight> EdgeWeights; protected: typedef std::vector<Edge> MaxSpanTree; MaxSpanTree MST; public: static char ID; // Class identification, replacement for typeinfo /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a /// spanning tree. MaximumSpanningTree(EdgeWeights &EdgeVector) { std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>()); // Create spanning tree, Forest contains a special data structure // that makes checking if two nodes are already in a common (sub-)tree // fast and cheap. EquivalenceClasses<const T*> Forest; for (typename EdgeWeights::iterator EWi = EdgeVector.begin(), EWe = EdgeVector.end(); EWi != EWe; ++EWi) { Edge e = (*EWi).first; Forest.insert(e.first); Forest.insert(e.second); } // Iterate over the sorted edges, biggest first. for (typename EdgeWeights::iterator EWi = EdgeVector.begin(), EWe = EdgeVector.end(); EWi != EWe; ++EWi) { Edge e = (*EWi).first; if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) { Forest.unionSets(e.first, e.second); // So we know now that the edge is not already in a subtree, so we push // the edge to the MST. MST.push_back(e); } } } typename MaxSpanTree::iterator begin() { return MST.begin(); } typename MaxSpanTree::iterator end() { return MST.end(); } }; } // End llvm namespace #endif