//===- PPCRegisterInfo.cpp - PowerPC Register Information -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the PowerPC implementation of the TargetRegisterInfo // class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "reginfo" #include "PPC.h" #include "PPCInstrBuilder.h" #include "PPCMachineFunctionInfo.h" #include "PPCRegisterInfo.h" #include "PPCFrameLowering.h" #include "PPCSubtarget.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include <cstdlib> #define GET_REGINFO_TARGET_DESC #include "PPCGenRegisterInfo.inc" // FIXME (64-bit): Eventually enable by default. namespace llvm { cl::opt<bool> EnablePPC32RS("enable-ppc32-regscavenger", cl::init(false), cl::desc("Enable PPC32 register scavenger"), cl::Hidden); cl::opt<bool> EnablePPC64RS("enable-ppc64-regscavenger", cl::init(false), cl::desc("Enable PPC64 register scavenger"), cl::Hidden); } using namespace llvm; // FIXME (64-bit): Should be inlined. bool PPCRegisterInfo::requiresRegisterScavenging(const MachineFunction &) const { return ((EnablePPC32RS && !Subtarget.isPPC64()) || (EnablePPC64RS && Subtarget.isPPC64())); } PPCRegisterInfo::PPCRegisterInfo(const PPCSubtarget &ST, const TargetInstrInfo &tii) : PPCGenRegisterInfo(ST.isPPC64() ? PPC::LR8 : PPC::LR, ST.isPPC64() ? 0 : 1, ST.isPPC64() ? 0 : 1), Subtarget(ST), TII(tii) { ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; ImmToIdxMap[PPC::ADDI] = PPC::ADD4; // 64-bit ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; ImmToIdxMap[PPC::STD_32] = PPC::STDX_32; } /// getPointerRegClass - Return the register class to use to hold pointers. /// This is used for addressing modes. const TargetRegisterClass * PPCRegisterInfo::getPointerRegClass(unsigned Kind) const { if (Subtarget.isPPC64()) return &PPC::G8RCRegClass; return &PPC::GPRCRegClass; } const unsigned* PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { // 32-bit Darwin calling convention. static const unsigned Darwin32_CalleeSavedRegs[] = { PPC::R13, PPC::R14, PPC::R15, PPC::R16, PPC::R17, PPC::R18, PPC::R19, PPC::R20, PPC::R21, PPC::R22, PPC::R23, PPC::R24, PPC::R25, PPC::R26, PPC::R27, PPC::R28, PPC::R29, PPC::R30, PPC::R31, PPC::F14, PPC::F15, PPC::F16, PPC::F17, PPC::F18, PPC::F19, PPC::F20, PPC::F21, PPC::F22, PPC::F23, PPC::F24, PPC::F25, PPC::F26, PPC::F27, PPC::F28, PPC::F29, PPC::F30, PPC::F31, PPC::CR2, PPC::CR3, PPC::CR4, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, PPC::LR, 0 }; // 32-bit SVR4 calling convention. static const unsigned SVR4_CalleeSavedRegs[] = { PPC::R14, PPC::R15, PPC::R16, PPC::R17, PPC::R18, PPC::R19, PPC::R20, PPC::R21, PPC::R22, PPC::R23, PPC::R24, PPC::R25, PPC::R26, PPC::R27, PPC::R28, PPC::R29, PPC::R30, PPC::R31, PPC::F14, PPC::F15, PPC::F16, PPC::F17, PPC::F18, PPC::F19, PPC::F20, PPC::F21, PPC::F22, PPC::F23, PPC::F24, PPC::F25, PPC::F26, PPC::F27, PPC::F28, PPC::F29, PPC::F30, PPC::F31, PPC::CR2, PPC::CR3, PPC::CR4, PPC::VRSAVE, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, 0 }; // 64-bit Darwin calling convention. static const unsigned Darwin64_CalleeSavedRegs[] = { PPC::X14, PPC::X15, PPC::X16, PPC::X17, PPC::X18, PPC::X19, PPC::X20, PPC::X21, PPC::X22, PPC::X23, PPC::X24, PPC::X25, PPC::X26, PPC::X27, PPC::X28, PPC::X29, PPC::X30, PPC::X31, PPC::F14, PPC::F15, PPC::F16, PPC::F17, PPC::F18, PPC::F19, PPC::F20, PPC::F21, PPC::F22, PPC::F23, PPC::F24, PPC::F25, PPC::F26, PPC::F27, PPC::F28, PPC::F29, PPC::F30, PPC::F31, PPC::CR2, PPC::CR3, PPC::CR4, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, PPC::LR8, 0 }; // 64-bit SVR4 calling convention. static const unsigned SVR4_64_CalleeSavedRegs[] = { PPC::X14, PPC::X15, PPC::X16, PPC::X17, PPC::X18, PPC::X19, PPC::X20, PPC::X21, PPC::X22, PPC::X23, PPC::X24, PPC::X25, PPC::X26, PPC::X27, PPC::X28, PPC::X29, PPC::X30, PPC::X31, PPC::F14, PPC::F15, PPC::F16, PPC::F17, PPC::F18, PPC::F19, PPC::F20, PPC::F21, PPC::F22, PPC::F23, PPC::F24, PPC::F25, PPC::F26, PPC::F27, PPC::F28, PPC::F29, PPC::F30, PPC::F31, PPC::CR2, PPC::CR3, PPC::CR4, PPC::VRSAVE, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, 0 }; if (Subtarget.isDarwinABI()) return Subtarget.isPPC64() ? Darwin64_CalleeSavedRegs : Darwin32_CalleeSavedRegs; return Subtarget.isPPC64() ? SVR4_64_CalleeSavedRegs : SVR4_CalleeSavedRegs; } BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { BitVector Reserved(getNumRegs()); const PPCFrameLowering *PPCFI = static_cast<const PPCFrameLowering*>(MF.getTarget().getFrameLowering()); Reserved.set(PPC::R0); Reserved.set(PPC::R1); Reserved.set(PPC::LR); Reserved.set(PPC::LR8); Reserved.set(PPC::RM); // The SVR4 ABI reserves r2 and r13 if (Subtarget.isSVR4ABI()) { Reserved.set(PPC::R2); // System-reserved register Reserved.set(PPC::R13); // Small Data Area pointer register } // Reserve R2 on Darwin to hack around the problem of save/restore of CR // when the stack frame is too big to address directly; we need two regs. // This is a hack. if (Subtarget.isDarwinABI()) { Reserved.set(PPC::R2); } // On PPC64, r13 is the thread pointer. Never allocate this register. // Note that this is over conservative, as it also prevents allocation of R31 // when the FP is not needed. if (Subtarget.isPPC64()) { Reserved.set(PPC::R13); Reserved.set(PPC::R31); if (!requiresRegisterScavenging(MF)) Reserved.set(PPC::R0); // FIXME (64-bit): Remove Reserved.set(PPC::X0); Reserved.set(PPC::X1); Reserved.set(PPC::X13); Reserved.set(PPC::X31); // The 64-bit SVR4 ABI reserves r2 for the TOC pointer. if (Subtarget.isSVR4ABI()) { Reserved.set(PPC::X2); } // Reserve R2 on Darwin to hack around the problem of save/restore of CR // when the stack frame is too big to address directly; we need two regs. // This is a hack. if (Subtarget.isDarwinABI()) { Reserved.set(PPC::X2); } } if (PPCFI->needsFP(MF)) Reserved.set(PPC::R31); return Reserved; } //===----------------------------------------------------------------------===// // Stack Frame Processing methods //===----------------------------------------------------------------------===// void PPCRegisterInfo:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (GuaranteedTailCallOpt && I->getOpcode() == PPC::ADJCALLSTACKUP) { // Add (actually subtract) back the amount the callee popped on return. if (int CalleeAmt = I->getOperand(1).getImm()) { bool is64Bit = Subtarget.isPPC64(); CalleeAmt *= -1; unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; MachineInstr *MI = I; DebugLoc dl = MI->getDebugLoc(); if (isInt<16>(CalleeAmt)) { BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg).addReg(StackReg). addImm(CalleeAmt); } else { MachineBasicBlock::iterator MBBI = I; BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) .addImm(CalleeAmt >> 16); BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) .addReg(TmpReg, RegState::Kill) .addImm(CalleeAmt & 0xFFFF); BuildMI(MBB, MBBI, dl, TII.get(ADDInstr)) .addReg(StackReg) .addReg(StackReg) .addReg(TmpReg); } } } // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. MBB.erase(I); } /// findScratchRegister - Find a 'free' PPC register. Try for a call-clobbered /// register first and then a spilled callee-saved register if that fails. static unsigned findScratchRegister(MachineBasicBlock::iterator II, RegScavenger *RS, const TargetRegisterClass *RC, int SPAdj) { assert(RS && "Register scavenging must be on"); unsigned Reg = RS->FindUnusedReg(RC); // FIXME: move ARM callee-saved reg scan to target independent code, then // search for already spilled CS register here. if (Reg == 0) Reg = RS->scavengeRegister(RC, II, SPAdj); return Reg; } /// lowerDynamicAlloc - Generate the code for allocating an object in the /// current frame. The sequence of code with be in the general form /// /// addi R0, SP, \#frameSize ; get the address of the previous frame /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation /// void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II, int SPAdj, RegScavenger *RS) const { // Get the instruction. MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); // Get the frame info. MachineFrameInfo *MFI = MF.getFrameInfo(); // Determine whether 64-bit pointers are used. bool LP64 = Subtarget.isPPC64(); DebugLoc dl = MI.getDebugLoc(); // Get the maximum call stack size. unsigned maxCallFrameSize = MFI->getMaxCallFrameSize(); // Get the total frame size. unsigned FrameSize = MFI->getStackSize(); // Get stack alignments. unsigned TargetAlign = MF.getTarget().getFrameLowering()->getStackAlignment(); unsigned MaxAlign = MFI->getMaxAlignment(); if (MaxAlign > TargetAlign) report_fatal_error("Dynamic alloca with large aligns not supported"); // Determine the previous frame's address. If FrameSize can't be // represented as 16 bits or we need special alignment, then we load the // previous frame's address from 0(SP). Why not do an addis of the hi? // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. // Constructing the constant and adding would take 3 instructions. // Fortunately, a frame greater than 32K is rare. const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; const TargetRegisterClass *RC = LP64 ? G8RC : GPRC; // FIXME (64-bit): Use "findScratchRegister" unsigned Reg; if (requiresRegisterScavenging(MF)) Reg = findScratchRegister(II, RS, RC, SPAdj); else Reg = PPC::R0; if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) { BuildMI(MBB, II, dl, TII.get(PPC::ADDI), Reg) .addReg(PPC::R31) .addImm(FrameSize); } else if (LP64) { if (requiresRegisterScavenging(MF)) // FIXME (64-bit): Use "true" part. BuildMI(MBB, II, dl, TII.get(PPC::LD), Reg) .addImm(0) .addReg(PPC::X1); else BuildMI(MBB, II, dl, TII.get(PPC::LD), PPC::X0) .addImm(0) .addReg(PPC::X1); } else { BuildMI(MBB, II, dl, TII.get(PPC::LWZ), Reg) .addImm(0) .addReg(PPC::R1); } // Grow the stack and update the stack pointer link, then determine the // address of new allocated space. if (LP64) { if (requiresRegisterScavenging(MF)) // FIXME (64-bit): Use "true" part. BuildMI(MBB, II, dl, TII.get(PPC::STDUX)) .addReg(Reg, RegState::Kill) .addReg(PPC::X1) .addReg(MI.getOperand(1).getReg()); else BuildMI(MBB, II, dl, TII.get(PPC::STDUX)) .addReg(PPC::X0, RegState::Kill) .addReg(PPC::X1) .addReg(MI.getOperand(1).getReg()); if (!MI.getOperand(1).isKill()) BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) .addReg(PPC::X1) .addImm(maxCallFrameSize); else // Implicitly kill the register. BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) .addReg(PPC::X1) .addImm(maxCallFrameSize) .addReg(MI.getOperand(1).getReg(), RegState::ImplicitKill); } else { BuildMI(MBB, II, dl, TII.get(PPC::STWUX)) .addReg(Reg, RegState::Kill) .addReg(PPC::R1) .addReg(MI.getOperand(1).getReg()); if (!MI.getOperand(1).isKill()) BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) .addReg(PPC::R1) .addImm(maxCallFrameSize); else // Implicitly kill the register. BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) .addReg(PPC::R1) .addImm(maxCallFrameSize) .addReg(MI.getOperand(1).getReg(), RegState::ImplicitKill); } // Discard the DYNALLOC instruction. MBB.erase(II); } /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of /// reserving a whole register (R0), we scrounge for one here. This generates /// code like this: /// /// mfcr rA ; Move the conditional register into GPR rA. /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. /// stw rA, FI ; Store rA to the frame. /// void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex, int SPAdj, RegScavenger *RS) const { // Get the instruction. MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset>, <FI> // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); DebugLoc dl = MI.getDebugLoc(); const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; const TargetRegisterClass *RC = Subtarget.isPPC64() ? G8RC : GPRC; unsigned Reg = findScratchRegister(II, RS, RC, SPAdj); unsigned SrcReg = MI.getOperand(0).getReg(); bool LP64 = Subtarget.isPPC64(); // We need to store the CR in the low 4-bits of the saved value. First, issue // an MFCRpsued to save all of the CRBits and, if needed, kill the SrcReg. BuildMI(MBB, II, dl, TII.get(PPC::MFCRpseud), Reg) .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill())); // If the saved register wasn't CR0, shift the bits left so that they are in // CR0's slot. if (SrcReg != PPC::CR0) // rlwinm rA, rA, ShiftBits, 0, 31. BuildMI(MBB, II, dl, TII.get(PPC::RLWINM), Reg) .addReg(Reg, RegState::Kill) .addImm(getPPCRegisterNumbering(SrcReg) * 4) .addImm(0) .addImm(31); addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) .addReg(Reg, getKillRegState(MI.getOperand(1).getImm())), FrameIndex); // Discard the pseudo instruction. MBB.erase(II); } void PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, RegScavenger *RS) const { assert(SPAdj == 0 && "Unexpected"); // Get the instruction. MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); // Get the frame info. MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); DebugLoc dl = MI.getDebugLoc(); // Find out which operand is the frame index. unsigned FIOperandNo = 0; while (!MI.getOperand(FIOperandNo).isFI()) { ++FIOperandNo; assert(FIOperandNo != MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } // Take into account whether it's an add or mem instruction unsigned OffsetOperandNo = (FIOperandNo == 2) ? 1 : 2; if (MI.isInlineAsm()) OffsetOperandNo = FIOperandNo-1; // Get the frame index. int FrameIndex = MI.getOperand(FIOperandNo).getIndex(); // Get the frame pointer save index. Users of this index are primarily // DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); int FPSI = FI->getFramePointerSaveIndex(); // Get the instruction opcode. unsigned OpC = MI.getOpcode(); // Special case for dynamic alloca. if (FPSI && FrameIndex == FPSI && (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { lowerDynamicAlloc(II, SPAdj, RS); return; } // Special case for pseudo-op SPILL_CR. if (requiresRegisterScavenging(MF)) // FIXME (64-bit): Enable by default. if (OpC == PPC::SPILL_CR) { lowerCRSpilling(II, FrameIndex, SPAdj, RS); return; } // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). MI.getOperand(FIOperandNo).ChangeToRegister(TFI->hasFP(MF) ? PPC::R31 : PPC::R1, false); // Figure out if the offset in the instruction is shifted right two bits. This // is true for instructions like "STD", which the machine implicitly adds two // low zeros to. bool isIXAddr = false; switch (OpC) { case PPC::LWA: case PPC::LD: case PPC::STD: case PPC::STD_32: isIXAddr = true; break; } // Now add the frame object offset to the offset from r1. int Offset = MFI->getObjectOffset(FrameIndex); if (!isIXAddr) Offset += MI.getOperand(OffsetOperandNo).getImm(); else Offset += MI.getOperand(OffsetOperandNo).getImm() << 2; // If we're not using a Frame Pointer that has been set to the value of the // SP before having the stack size subtracted from it, then add the stack size // to Offset to get the correct offset. // Naked functions have stack size 0, although getStackSize may not reflect that // because we didn't call all the pieces that compute it for naked functions. if (!MF.getFunction()->hasFnAttr(Attribute::Naked)) Offset += MFI->getStackSize(); // If we can, encode the offset directly into the instruction. If this is a // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits // clear can be encoded. This is extremely uncommon, because normally you // only "std" to a stack slot that is at least 4-byte aligned, but it can // happen in invalid code. if (isInt<16>(Offset) && (!isIXAddr || (Offset & 3) == 0)) { if (isIXAddr) Offset >>= 2; // The actual encoded value has the low two bits zero. MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); return; } // The offset doesn't fit into a single register, scavenge one to build the // offset in. // FIXME: figure out what SPAdj is doing here. // FIXME (64-bit): Use "findScratchRegister". unsigned SReg; if (requiresRegisterScavenging(MF)) SReg = findScratchRegister(II, RS, &PPC::GPRCRegClass, SPAdj); else SReg = PPC::R0; // Insert a set of rA with the full offset value before the ld, st, or add BuildMI(MBB, II, dl, TII.get(PPC::LIS), SReg) .addImm(Offset >> 16); BuildMI(MBB, II, dl, TII.get(PPC::ORI), SReg) .addReg(SReg, RegState::Kill) .addImm(Offset); // Convert into indexed form of the instruction: // // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 unsigned OperandBase; if (OpC != TargetOpcode::INLINEASM) { assert(ImmToIdxMap.count(OpC) && "No indexed form of load or store available!"); unsigned NewOpcode = ImmToIdxMap.find(OpC)->second; MI.setDesc(TII.get(NewOpcode)); OperandBase = 1; } else { OperandBase = OffsetOperandNo; } unsigned StackReg = MI.getOperand(FIOperandNo).getReg(); MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false); } unsigned PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const { const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); if (!Subtarget.isPPC64()) return TFI->hasFP(MF) ? PPC::R31 : PPC::R1; else return TFI->hasFP(MF) ? PPC::X31 : PPC::X1; } unsigned PPCRegisterInfo::getEHExceptionRegister() const { return !Subtarget.isPPC64() ? PPC::R3 : PPC::X3; } unsigned PPCRegisterInfo::getEHHandlerRegister() const { return !Subtarget.isPPC64() ? PPC::R4 : PPC::X4; }