//===-- MBlazeISelLowering.cpp - MBlaze DAG Lowering Implementation -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that MBlaze uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mblaze-lower" #include "MBlazeISelLowering.h" #include "MBlazeMachineFunction.h" #include "MBlazeTargetMachine.h" #include "MBlazeTargetObjectFile.h" #include "MBlazeSubtarget.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Intrinsics.h" #include "llvm/CallingConv.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); const char *MBlazeTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { case MBlazeISD::JmpLink : return "MBlazeISD::JmpLink"; case MBlazeISD::GPRel : return "MBlazeISD::GPRel"; case MBlazeISD::Wrap : return "MBlazeISD::Wrap"; case MBlazeISD::ICmp : return "MBlazeISD::ICmp"; case MBlazeISD::Ret : return "MBlazeISD::Ret"; case MBlazeISD::Select_CC : return "MBlazeISD::Select_CC"; default : return NULL; } } MBlazeTargetLowering::MBlazeTargetLowering(MBlazeTargetMachine &TM) : TargetLowering(TM, new MBlazeTargetObjectFile()) { Subtarget = &TM.getSubtarget<MBlazeSubtarget>(); // MBlaze does not have i1 type, so use i32 for // setcc operations results (slt, sgt, ...). setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? // Set up the register classes addRegisterClass(MVT::i32, MBlaze::GPRRegisterClass); if (Subtarget->hasFPU()) { addRegisterClass(MVT::f32, MBlaze::GPRRegisterClass); setOperationAction(ISD::ConstantFP, MVT::f32, Legal); } // Floating point operations which are not supported setOperationAction(ISD::FREM, MVT::f32, Expand); setOperationAction(ISD::FMA, MVT::f32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i8, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i16, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); setOperationAction(ISD::FP_ROUND, MVT::f32, Expand); setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FPOWI, MVT::f32, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); setOperationAction(ISD::FLOG, MVT::f32, Expand); setOperationAction(ISD::FLOG2, MVT::f32, Expand); setOperationAction(ISD::FLOG10, MVT::f32, Expand); setOperationAction(ISD::FEXP, MVT::f32, Expand); // Load extented operations for i1 types must be promoted setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); // Sign extended loads must be expanded setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand); // MBlaze has no REM or DIVREM operations. setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); // If the processor doesn't support multiply then expand it if (!Subtarget->hasMul()) { setOperationAction(ISD::MUL, MVT::i32, Expand); } // If the processor doesn't support 64-bit multiply then expand if (!Subtarget->hasMul() || !Subtarget->hasMul64()) { setOperationAction(ISD::MULHS, MVT::i32, Expand); setOperationAction(ISD::MULHS, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i32, Expand); setOperationAction(ISD::MULHU, MVT::i64, Expand); } // If the processor doesn't support division then expand if (!Subtarget->hasDiv()) { setOperationAction(ISD::UDIV, MVT::i32, Expand); setOperationAction(ISD::SDIV, MVT::i32, Expand); } // Expand unsupported conversions setOperationAction(ISD::BITCAST, MVT::f32, Expand); setOperationAction(ISD::BITCAST, MVT::i32, Expand); // Expand SELECT_CC setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); // MBlaze doesn't have MUL_LOHI setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); // Used by legalize types to correctly generate the setcc result. // Without this, every float setcc comes with a AND/OR with the result, // we don't want this, since the fpcmp result goes to a flag register, // which is used implicitly by brcond and select operations. AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); AddPromotedToType(ISD::SELECT, MVT::i1, MVT::i32); AddPromotedToType(ISD::SELECT_CC, MVT::i1, MVT::i32); // MBlaze Custom Operations setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); // Variable Argument support setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); // Operations not directly supported by MBlaze. setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::Other, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::ROTR, MVT::i32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); setOperationAction(ISD::CTLZ, MVT::i32, Expand); setOperationAction(ISD::CTTZ, MVT::i32, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i32, Expand); // We don't have line number support yet. setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); // Use the default for now setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); // MBlaze doesn't have extending float->double load/store setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setMinFunctionAlignment(2); setStackPointerRegisterToSaveRestore(MBlaze::R1); computeRegisterProperties(); } EVT MBlazeTargetLowering::getSetCCResultType(EVT VT) const { return MVT::i32; } SDValue MBlazeTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); } return SDValue(); } //===----------------------------------------------------------------------===// // Lower helper functions //===----------------------------------------------------------------------===// MachineBasicBlock* MBlazeTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { switch (MI->getOpcode()) { default: assert(false && "Unexpected instr type to insert"); case MBlaze::ShiftRL: case MBlaze::ShiftRA: case MBlaze::ShiftL: return EmitCustomShift(MI, MBB); case MBlaze::Select_FCC: case MBlaze::Select_CC: return EmitCustomSelect(MI, MBB); case MBlaze::CAS32: case MBlaze::SWP32: case MBlaze::LAA32: case MBlaze::LAS32: case MBlaze::LAD32: case MBlaze::LAO32: case MBlaze::LAX32: case MBlaze::LAN32: return EmitCustomAtomic(MI, MBB); case MBlaze::MEMBARRIER: // The Microblaze does not need memory barriers. Just delete the pseudo // instruction and finish. MI->eraseFromParent(); return MBB; } } MachineBasicBlock* MBlazeTargetLowering::EmitCustomShift(MachineInstr *MI, MachineBasicBlock *MBB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); // To "insert" a shift left instruction, we actually have to insert a // simple loop. The incoming instruction knows the destination vreg to // set, the source vreg to operate over and the shift amount. const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction::iterator It = MBB; ++It; // start: // andi samt, samt, 31 // beqid samt, finish // add dst, src, r0 // loop: // addik samt, samt, -1 // sra dst, dst // bneid samt, loop // nop // finish: MachineFunction *F = MBB->getParent(); MachineRegisterInfo &R = F->getRegInfo(); MachineBasicBlock *loop = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *finish = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loop); F->insert(It, finish); // Update machine-CFG edges by transferring adding all successors and // remaining instructions from the current block to the new block which // will contain the Phi node for the select. finish->splice(finish->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); finish->transferSuccessorsAndUpdatePHIs(MBB); // Add the true and fallthrough blocks as its successors. MBB->addSuccessor(loop); MBB->addSuccessor(finish); // Next, add the finish block as a successor of the loop block loop->addSuccessor(finish); loop->addSuccessor(loop); unsigned IAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass); BuildMI(MBB, dl, TII->get(MBlaze::ANDI), IAMT) .addReg(MI->getOperand(2).getReg()) .addImm(31); unsigned IVAL = R.createVirtualRegister(MBlaze::GPRRegisterClass); BuildMI(MBB, dl, TII->get(MBlaze::ADDIK), IVAL) .addReg(MI->getOperand(1).getReg()) .addImm(0); BuildMI(MBB, dl, TII->get(MBlaze::BEQID)) .addReg(IAMT) .addMBB(finish); unsigned DST = R.createVirtualRegister(MBlaze::GPRRegisterClass); unsigned NDST = R.createVirtualRegister(MBlaze::GPRRegisterClass); BuildMI(loop, dl, TII->get(MBlaze::PHI), DST) .addReg(IVAL).addMBB(MBB) .addReg(NDST).addMBB(loop); unsigned SAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass); unsigned NAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass); BuildMI(loop, dl, TII->get(MBlaze::PHI), SAMT) .addReg(IAMT).addMBB(MBB) .addReg(NAMT).addMBB(loop); if (MI->getOpcode() == MBlaze::ShiftL) BuildMI(loop, dl, TII->get(MBlaze::ADD), NDST).addReg(DST).addReg(DST); else if (MI->getOpcode() == MBlaze::ShiftRA) BuildMI(loop, dl, TII->get(MBlaze::SRA), NDST).addReg(DST); else if (MI->getOpcode() == MBlaze::ShiftRL) BuildMI(loop, dl, TII->get(MBlaze::SRL), NDST).addReg(DST); else llvm_unreachable("Cannot lower unknown shift instruction"); BuildMI(loop, dl, TII->get(MBlaze::ADDIK), NAMT) .addReg(SAMT) .addImm(-1); BuildMI(loop, dl, TII->get(MBlaze::BNEID)) .addReg(NAMT) .addMBB(loop); BuildMI(*finish, finish->begin(), dl, TII->get(MBlaze::PHI), MI->getOperand(0).getReg()) .addReg(IVAL).addMBB(MBB) .addReg(NDST).addMBB(loop); // The pseudo instruction is no longer needed so remove it MI->eraseFromParent(); return finish; } MachineBasicBlock* MBlazeTargetLowering::EmitCustomSelect(MachineInstr *MI, MachineBasicBlock *MBB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction::iterator It = MBB; ++It; // thisMBB: // ... // TrueVal = ... // setcc r1, r2, r3 // bNE r1, r0, copy1MBB // fallthrough --> copy0MBB MachineFunction *F = MBB->getParent(); MachineBasicBlock *flsBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *dneBB = F->CreateMachineBasicBlock(LLVM_BB); unsigned Opc; switch (MI->getOperand(4).getImm()) { default: llvm_unreachable("Unknown branch condition"); case MBlazeCC::EQ: Opc = MBlaze::BEQID; break; case MBlazeCC::NE: Opc = MBlaze::BNEID; break; case MBlazeCC::GT: Opc = MBlaze::BGTID; break; case MBlazeCC::LT: Opc = MBlaze::BLTID; break; case MBlazeCC::GE: Opc = MBlaze::BGEID; break; case MBlazeCC::LE: Opc = MBlaze::BLEID; break; } F->insert(It, flsBB); F->insert(It, dneBB); // Transfer the remainder of MBB and its successor edges to dneBB. dneBB->splice(dneBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); dneBB->transferSuccessorsAndUpdatePHIs(MBB); MBB->addSuccessor(flsBB); MBB->addSuccessor(dneBB); flsBB->addSuccessor(dneBB); BuildMI(MBB, dl, TII->get(Opc)) .addReg(MI->getOperand(3).getReg()) .addMBB(dneBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... //BuildMI(dneBB, dl, TII->get(MBlaze::PHI), MI->getOperand(0).getReg()) // .addReg(MI->getOperand(1).getReg()).addMBB(flsBB) // .addReg(MI->getOperand(2).getReg()).addMBB(BB); BuildMI(*dneBB, dneBB->begin(), dl, TII->get(MBlaze::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(2).getReg()).addMBB(flsBB) .addReg(MI->getOperand(1).getReg()).addMBB(MBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return dneBB; } MachineBasicBlock* MBlazeTargetLowering::EmitCustomAtomic(MachineInstr *MI, MachineBasicBlock *MBB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); // All atomic instructions on the Microblaze are implemented using the // load-linked / store-conditional style atomic instruction sequences. // Thus, all operations will look something like the following: // // start: // lwx RV, RP, 0 // <do stuff> // swx RV, RP, 0 // addic RC, R0, 0 // bneid RC, start // // exit: // // To "insert" a shift left instruction, we actually have to insert a // simple loop. The incoming instruction knows the destination vreg to // set, the source vreg to operate over and the shift amount. const BasicBlock *LLVM_BB = MBB->getBasicBlock(); MachineFunction::iterator It = MBB; ++It; // start: // andi samt, samt, 31 // beqid samt, finish // add dst, src, r0 // loop: // addik samt, samt, -1 // sra dst, dst // bneid samt, loop // nop // finish: MachineFunction *F = MBB->getParent(); MachineRegisterInfo &R = F->getRegInfo(); // Create the start and exit basic blocks for the atomic operation MachineBasicBlock *start = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exit = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, start); F->insert(It, exit); // Update machine-CFG edges by transferring adding all successors and // remaining instructions from the current block to the new block which // will contain the Phi node for the select. exit->splice(exit->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); exit->transferSuccessorsAndUpdatePHIs(MBB); // Add the fallthrough block as its successors. MBB->addSuccessor(start); BuildMI(start, dl, TII->get(MBlaze::LWX), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addReg(MBlaze::R0); MachineBasicBlock *final = start; unsigned finalReg = 0; switch (MI->getOpcode()) { default: llvm_unreachable("Cannot lower unknown atomic instruction!"); case MBlaze::SWP32: finalReg = MI->getOperand(2).getReg(); start->addSuccessor(exit); start->addSuccessor(start); break; case MBlaze::LAN32: case MBlaze::LAX32: case MBlaze::LAO32: case MBlaze::LAD32: case MBlaze::LAS32: case MBlaze::LAA32: { unsigned opcode = 0; switch (MI->getOpcode()) { default: llvm_unreachable("Cannot lower unknown atomic load!"); case MBlaze::LAA32: opcode = MBlaze::ADDIK; break; case MBlaze::LAS32: opcode = MBlaze::RSUBIK; break; case MBlaze::LAD32: opcode = MBlaze::AND; break; case MBlaze::LAO32: opcode = MBlaze::OR; break; case MBlaze::LAX32: opcode = MBlaze::XOR; break; case MBlaze::LAN32: opcode = MBlaze::AND; break; } finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass); start->addSuccessor(exit); start->addSuccessor(start); BuildMI(start, dl, TII->get(opcode), finalReg) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(2).getReg()); if (MI->getOpcode() == MBlaze::LAN32) { unsigned tmp = finalReg; finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass); BuildMI(start, dl, TII->get(MBlaze::XORI), finalReg) .addReg(tmp) .addImm(-1); } break; } case MBlaze::CAS32: { finalReg = MI->getOperand(3).getReg(); final = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, final); start->addSuccessor(exit); start->addSuccessor(final); final->addSuccessor(exit); final->addSuccessor(start); unsigned CMP = R.createVirtualRegister(MBlaze::GPRRegisterClass); BuildMI(start, dl, TII->get(MBlaze::CMP), CMP) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(2).getReg()); BuildMI(start, dl, TII->get(MBlaze::BNEID)) .addReg(CMP) .addMBB(exit); final->moveAfter(start); exit->moveAfter(final); break; } } unsigned CHK = R.createVirtualRegister(MBlaze::GPRRegisterClass); BuildMI(final, dl, TII->get(MBlaze::SWX)) .addReg(finalReg) .addReg(MI->getOperand(1).getReg()) .addReg(MBlaze::R0); BuildMI(final, dl, TII->get(MBlaze::ADDIC), CHK) .addReg(MBlaze::R0) .addImm(0); BuildMI(final, dl, TII->get(MBlaze::BNEID)) .addReg(CHK) .addMBB(start); // The pseudo instruction is no longer needed so remove it MI->eraseFromParent(); return exit; } //===----------------------------------------------------------------------===// // Misc Lower Operation implementation //===----------------------------------------------------------------------===// // SDValue MBlazeTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); DebugLoc dl = Op.getDebugLoc(); unsigned Opc; SDValue CompareFlag; if (LHS.getValueType() == MVT::i32) { Opc = MBlazeISD::Select_CC; CompareFlag = DAG.getNode(MBlazeISD::ICmp, dl, MVT::i32, LHS, RHS) .getValue(1); } else { llvm_unreachable("Cannot lower select_cc with unknown type"); } return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, CompareFlag); } SDValue MBlazeTargetLowering:: LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { // FIXME there isn't actually debug info here DebugLoc dl = Op.getDebugLoc(); const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32); return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, GA); } SDValue MBlazeTargetLowering:: LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { llvm_unreachable("TLS not implemented for MicroBlaze."); return SDValue(); // Not reached } SDValue MBlazeTargetLowering:: LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { SDValue ResNode; SDValue HiPart; // FIXME there isn't actually debug info here DebugLoc dl = Op.getDebugLoc(); EVT PtrVT = Op.getValueType(); JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 0); return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, JTI); } SDValue MBlazeTargetLowering:: LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { SDValue ResNode; ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); const Constant *C = N->getConstVal(); DebugLoc dl = Op.getDebugLoc(); SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), N->getOffset(), 0); return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, CP); } SDValue MBlazeTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MBlazeFunctionInfo *FuncInfo = MF.getInfo<MBlazeFunctionInfo>(); DebugLoc dl = Op.getDebugLoc(); SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy()); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "MBlazeGenCallingConv.inc" static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { static const unsigned ArgRegs[] = { MBlaze::R5, MBlaze::R6, MBlaze::R7, MBlaze::R8, MBlaze::R9, MBlaze::R10 }; const unsigned NumArgRegs = array_lengthof(ArgRegs); unsigned Reg = State.AllocateReg(ArgRegs, NumArgRegs); if (!Reg) return false; unsigned SizeInBytes = ValVT.getSizeInBits() >> 3; State.AllocateStack(SizeInBytes, SizeInBytes); State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return true; } //===----------------------------------------------------------------------===// // Call Calling Convention Implementation //===----------------------------------------------------------------------===// /// LowerCall - functions arguments are copied from virtual regs to /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. /// TODO: isVarArg, isTailCall. SDValue MBlazeTargetLowering:: LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // MBlaze does not yet support tail call optimization isTailCall = false; // The MBlaze requires stack slots for arguments passed to var arg // functions even if they are passed in registers. bool needsRegArgSlots = isVarArg; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering(); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_MBlaze); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // Variable argument function calls require a minimum of 24-bytes of stack if (isVarArg && NumBytes < 24) NumBytes = 24; Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; SmallVector<SDValue, 8> MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; MVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); break; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { // Register can't get to this point... assert(VA.isMemLoc()); // Since we are alread passing values on the stack we don't // need to worry about creating additional slots for the // values passed via registers. needsRegArgSlots = false; // Create the frame index object for this incoming parameter unsigned ArgSize = VA.getValVT().getSizeInBits()/8; unsigned StackLoc = VA.getLocMemOffset() + 4; int FI = MFI->CreateFixedObject(ArgSize, StackLoc, true); SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy()); // emit ISD::STORE whichs stores the // parameter value to a stack Location MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); } } // If we need to reserve stack space for the arguments passed via registers // then create a fixed stack object at the beginning of the stack. if (needsRegArgSlots && TFI.hasReservedCallFrame(MF)) MFI->CreateFixedObject(28,0,true); // Transform all store nodes into one single node because all store // nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emitted instructions must be // stuck together. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0, 0); else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), 0); // MBlazeJmpLink = #chain, #target_address, #opt_in_flags... // = Chain, Callee, Reg#1, Reg#2, ... // // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector<SDValue, 8> Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); } if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(MBlazeISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue MBlazeTargetLowering:: LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { // Assign locations to each value returned by this call. SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_MBlaze); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), RVLocs[i].getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } return Chain; } //===----------------------------------------------------------------------===// // Formal Arguments Calling Convention Implementation //===----------------------------------------------------------------------===// /// LowerFormalArguments - transform physical registers into /// virtual registers and generate load operations for /// arguments places on the stack. SDValue MBlazeTargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MBlazeFunctionInfo *MBlazeFI = MF.getInfo<MBlazeFunctionInfo>(); unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF); MBlazeFI->setVarArgsFrameIndex(0); // Used with vargs to acumulate store chains. std::vector<SDValue> OutChains; // Keep track of the last register used for arguments unsigned ArgRegEnd = 0; // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_MBlaze); SDValue StackPtr; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // Arguments stored on registers if (VA.isRegLoc()) { MVT RegVT = VA.getLocVT(); ArgRegEnd = VA.getLocReg(); TargetRegisterClass *RC = 0; if (RegVT == MVT::i32) RC = MBlaze::GPRRegisterClass; else if (RegVT == MVT::f32) RC = MBlaze::GPRRegisterClass; else llvm_unreachable("RegVT not supported by LowerFormalArguments"); // Transform the arguments stored on // physical registers into virtual ones unsigned Reg = MF.addLiveIn(ArgRegEnd, RC); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); // If this is an 8 or 16-bit value, it has been passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. If if is a floating point value // then convert to the correct type. if (VA.getLocInfo() != CCValAssign::Full) { unsigned Opcode = 0; if (VA.getLocInfo() == CCValAssign::SExt) Opcode = ISD::AssertSext; else if (VA.getLocInfo() == CCValAssign::ZExt) Opcode = ISD::AssertZext; if (Opcode) ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); } InVals.push_back(ArgValue); } else { // VA.isRegLoc() // sanity check assert(VA.isMemLoc()); // The last argument is not a register ArgRegEnd = 0; // The stack pointer offset is relative to the caller stack frame. // Since the real stack size is unknown here, a negative SPOffset // is used so there's a way to adjust these offsets when the stack // size get known (on EliminateFrameIndex). A dummy SPOffset is // used instead of a direct negative address (which is recorded to // be used on emitPrologue) to avoid mis-calc of the first stack // offset on PEI::calculateFrameObjectOffsets. // Arguments are always 32-bit. unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; unsigned StackLoc = VA.getLocMemOffset() + 4; int FI = MFI->CreateFixedObject(ArgSize, 0, true); MBlazeFI->recordLoadArgsFI(FI, -StackLoc); MBlazeFI->recordLiveIn(FI); // Create load nodes to retrieve arguments from the stack SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0)); } } // To meet ABI, when VARARGS are passed on registers, the registers // must have their values written to the caller stack frame. If the last // argument was placed in the stack, there's no need to save any register. if ((isVarArg) && ArgRegEnd) { if (StackPtr.getNode() == 0) StackPtr = DAG.getRegister(StackReg, getPointerTy()); // The last register argument that must be saved is MBlaze::R10 TargetRegisterClass *RC = MBlaze::GPRRegisterClass; unsigned Begin = getMBlazeRegisterNumbering(MBlaze::R5); unsigned Start = getMBlazeRegisterNumbering(ArgRegEnd+1); unsigned End = getMBlazeRegisterNumbering(MBlaze::R10); unsigned StackLoc = Start - Begin + 1; for (; Start <= End; ++Start, ++StackLoc) { unsigned Reg = getMBlazeRegisterFromNumbering(Start); unsigned LiveReg = MF.addLiveIn(Reg, RC); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, LiveReg, MVT::i32); int FI = MFI->CreateFixedObject(4, 0, true); MBlazeFI->recordStoreVarArgsFI(FI, -(StackLoc*4)); SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy()); OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff, MachinePointerInfo(), false, false, 0)); // Record the frame index of the first variable argument // which is a value necessary to VASTART. if (!MBlazeFI->getVarArgsFrameIndex()) MBlazeFI->setVarArgsFrameIndex(FI); } } // All stores are grouped in one node to allow the matching between // the size of Ins and InVals. This only happens when on varg functions if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size()); } return Chain; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// SDValue MBlazeTargetLowering:: LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, DebugLoc dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of // the return value to a location SmallVector<CCValAssign, 16> RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); // Analize return values. CCInfo.AnalyzeReturn(Outs, RetCC_MBlaze); // If this is the first return lowered for this function, add // the regs to the liveout set for the function. if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { for (unsigned i = 0; i != RVLocs.size(); ++i) if (RVLocs[i].isRegLoc()) DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } SDValue Flag; // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); // guarantee that all emitted copies are // stuck together, avoiding something bad Flag = Chain.getValue(1); } // If this function is using the interrupt_handler calling convention // then use "rtid r14, 0" otherwise use "rtsd r15, 8" unsigned Ret = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlazeISD::IRet : MBlazeISD::Ret; unsigned Reg = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlaze::R14 : MBlaze::R15; SDValue DReg = DAG.getRegister(Reg, MVT::i32); if (Flag.getNode()) return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg, Flag); return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg); } //===----------------------------------------------------------------------===// // MBlaze Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. MBlazeTargetLowering::ConstraintType MBlazeTargetLowering:: getConstraintType(const std::string &Constraint) const { // MBlaze specific constrainy // // 'd' : An address register. Equivalent to r. // 'y' : Equivalent to r; retained for // backwards compatibility. // 'f' : Floating Point registers. if (Constraint.size() == 1) { switch (Constraint[0]) { default : break; case 'd': case 'y': case 'f': return C_RegisterClass; break; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight MBlazeTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (CallOperandVal == NULL) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'd': case 'y': if (type->isIntegerTy()) weight = CW_Register; break; case 'f': if (type->isFloatTy()) weight = CW_Register; break; } return weight; } /// Given a register class constraint, like 'r', if this corresponds directly /// to an LLVM register class, return a register of 0 and the register class /// pointer. std::pair<unsigned, const TargetRegisterClass*> MBlazeTargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': return std::make_pair(0U, MBlaze::GPRRegisterClass); // TODO: These can't possibly be right, but match what was in // getRegClassForInlineAsmConstraint. case 'd': case 'y': case 'f': if (VT == MVT::f32) return std::make_pair(0U, MBlaze::GPRRegisterClass); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } bool MBlazeTargetLowering:: isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The MBlaze target isn't yet aware of offsets. return false; } bool MBlazeTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { return VT != MVT::f32; }