//===- AlphaInstrInfo.td - The Alpha Instruction Set -------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// include "AlphaInstrFormats.td" //******************** //Custom DAG Nodes //******************** def SDTFPUnaryOpUnC : SDTypeProfile<1, 1, [ SDTCisFP<1>, SDTCisFP<0> ]>; def Alpha_cvtqt : SDNode<"AlphaISD::CVTQT_", SDTFPUnaryOpUnC, []>; def Alpha_cvtqs : SDNode<"AlphaISD::CVTQS_", SDTFPUnaryOpUnC, []>; def Alpha_cvttq : SDNode<"AlphaISD::CVTTQ_" , SDTFPUnaryOp, []>; def Alpha_gprello : SDNode<"AlphaISD::GPRelLo", SDTIntBinOp, []>; def Alpha_gprelhi : SDNode<"AlphaISD::GPRelHi", SDTIntBinOp, []>; def Alpha_rellit : SDNode<"AlphaISD::RelLit", SDTIntBinOp, [SDNPMayLoad]>; def retflag : SDNode<"AlphaISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue]>; // These are target-independent nodes, but have target-specific formats. def SDT_AlphaCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64> ]>; def SDT_AlphaCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i64>, SDTCisVT<1, i64> ]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AlphaCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AlphaCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; //******************** //Paterns for matching //******************** def invX : SDNodeXForm<imm, [{ //invert return getI64Imm(~N->getZExtValue()); }]>; def negX : SDNodeXForm<imm, [{ //negate return getI64Imm(~N->getZExtValue() + 1); }]>; def SExt32 : SDNodeXForm<imm, [{ //signed extend int to long return getI64Imm(((int64_t)N->getZExtValue() << 32) >> 32); }]>; def SExt16 : SDNodeXForm<imm, [{ //signed extend int to long return getI64Imm(((int64_t)N->getZExtValue() << 48) >> 48); }]>; def LL16 : SDNodeXForm<imm, [{ //lda part of constant return getI64Imm(get_lda16(N->getZExtValue())); }]>; def LH16 : SDNodeXForm<imm, [{ //ldah part of constant (or more if too big) return getI64Imm(get_ldah16(N->getZExtValue())); }]>; def iZAPX : SDNodeXForm<and, [{ // get imm to ZAPi ConstantSDNode *RHS = cast<ConstantSDNode>(N->getOperand(1)); return getI64Imm(get_zapImm(SDValue(), RHS->getZExtValue())); }]>; def nearP2X : SDNodeXForm<imm, [{ return getI64Imm(Log2_64(getNearPower2((uint64_t)N->getZExtValue()))); }]>; def nearP2RemX : SDNodeXForm<imm, [{ uint64_t x = abs64(N->getZExtValue() - getNearPower2((uint64_t)N->getZExtValue())); return getI64Imm(Log2_64(x)); }]>; def immUExt8 : PatLeaf<(imm), [{ //imm fits in 8 bit zero extended field return (uint64_t)N->getZExtValue() == (uint8_t)N->getZExtValue(); }]>; def immUExt8inv : PatLeaf<(imm), [{ //inverted imm fits in 8 bit zero extended field return (uint64_t)~N->getZExtValue() == (uint8_t)~N->getZExtValue(); }], invX>; def immUExt8neg : PatLeaf<(imm), [{ //negated imm fits in 8 bit zero extended field return ((uint64_t)~N->getZExtValue() + 1) == (uint8_t)((uint64_t)~N->getZExtValue() + 1); }], negX>; def immSExt16 : PatLeaf<(imm), [{ //imm fits in 16 bit sign extended field return ((int64_t)N->getZExtValue() << 48) >> 48 == (int64_t)N->getZExtValue(); }]>; def immSExt16int : PatLeaf<(imm), [{ //(int)imm fits in a 16 bit sign extended field return ((int64_t)N->getZExtValue() << 48) >> 48 == ((int64_t)N->getZExtValue() << 32) >> 32; }], SExt16>; def zappat : PatFrag<(ops node:$LHS), (and node:$LHS, imm), [{ ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!RHS) return 0; uint64_t build = get_zapImm(N->getOperand(0), (uint64_t)RHS->getZExtValue()); return build != 0; }]>; def immFPZ : PatLeaf<(fpimm), [{ //the only fpconstant nodes are +/- 0.0 (void)N; // silence warning. return true; }]>; def immRem1 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),1,0);}]>; def immRem2 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),2,0);}]>; def immRem3 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),3,0);}]>; def immRem4 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),4,0);}]>; def immRem5 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),5,0);}]>; def immRem1n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),1,1);}]>; def immRem2n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),2,1);}]>; def immRem3n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),3,1);}]>; def immRem4n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),4,1);}]>; def immRem5n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),5,1);}]>; def immRemP2n : PatLeaf<(imm), [{ return isPowerOf2_64(getNearPower2((uint64_t)N->getZExtValue()) - N->getZExtValue()); }]>; def immRemP2 : PatLeaf<(imm), [{ return isPowerOf2_64(N->getZExtValue() - getNearPower2((uint64_t)N->getZExtValue())); }]>; def immUExt8ME : PatLeaf<(imm), [{ //use this imm for mulqi int64_t d = abs64((int64_t)N->getZExtValue() - (int64_t)getNearPower2((uint64_t)N->getZExtValue())); if (isPowerOf2_64(d)) return false; switch (d) { case 1: case 3: case 5: return false; default: return (uint64_t)N->getZExtValue() == (uint8_t)N->getZExtValue(); }; }]>; def intop : PatFrag<(ops node:$op), (sext_inreg node:$op, i32)>; def add4 : PatFrag<(ops node:$op1, node:$op2), (add (shl node:$op1, 2), node:$op2)>; def sub4 : PatFrag<(ops node:$op1, node:$op2), (sub (shl node:$op1, 2), node:$op2)>; def add8 : PatFrag<(ops node:$op1, node:$op2), (add (shl node:$op1, 3), node:$op2)>; def sub8 : PatFrag<(ops node:$op1, node:$op2), (sub (shl node:$op1, 3), node:$op2)>; class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>; class CmpOpFrag<dag res> : PatFrag<(ops node:$R), res>; //Pseudo ops for selection def WTF : PseudoInstAlpha<(outs), (ins variable_ops), "#wtf", [], s_pseudo>; let hasCtrlDep = 1, Defs = [R30], Uses = [R30] in { def ADJUSTSTACKUP : PseudoInstAlpha<(outs), (ins s64imm:$amt), "; ADJUP $amt", [(callseq_start timm:$amt)], s_pseudo>; def ADJUSTSTACKDOWN : PseudoInstAlpha<(outs), (ins s64imm:$amt1, s64imm:$amt2), "; ADJDOWN $amt1", [(callseq_end timm:$amt1, timm:$amt2)], s_pseudo>; } def ALTENT : PseudoInstAlpha<(outs), (ins s64imm:$TARGET), "$$$TARGET..ng:\n", [], s_pseudo>; def PCLABEL : PseudoInstAlpha<(outs), (ins s64imm:$num), "PCMARKER_$num:\n",[], s_pseudo>; def MEMLABEL : PseudoInstAlpha<(outs), (ins s64imm:$i, s64imm:$j, s64imm:$k, s64imm:$m), "LSMARKER$$$i$$$j$$$k$$$m:", [], s_pseudo>; let usesCustomInserter = 1 in { // Expanded after instruction selection. def CAS32 : PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$cmp, GPRC:$swp), "", [(set GPRC:$dst, (atomic_cmp_swap_32 GPRC:$ptr, GPRC:$cmp, GPRC:$swp))], s_pseudo>; def CAS64 : PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$cmp, GPRC:$swp), "", [(set GPRC:$dst, (atomic_cmp_swap_64 GPRC:$ptr, GPRC:$cmp, GPRC:$swp))], s_pseudo>; def LAS32 : PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$swp), "", [(set GPRC:$dst, (atomic_load_add_32 GPRC:$ptr, GPRC:$swp))], s_pseudo>; def LAS64 :PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$swp), "", [(set GPRC:$dst, (atomic_load_add_64 GPRC:$ptr, GPRC:$swp))], s_pseudo>; def SWAP32 : PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$swp), "", [(set GPRC:$dst, (atomic_swap_32 GPRC:$ptr, GPRC:$swp))], s_pseudo>; def SWAP64 :PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$swp), "", [(set GPRC:$dst, (atomic_swap_64 GPRC:$ptr, GPRC:$swp))], s_pseudo>; } //*********************** //Real instructions //*********************** //Operation Form: //conditional moves, int multiclass cmov_inst<bits<7> fun, string asmstr, PatFrag OpNode> { def r : OForm4<0x11, fun, !strconcat(asmstr, " $RCOND,$RTRUE,$RDEST"), [(set GPRC:$RDEST, (select (OpNode GPRC:$RCOND), GPRC:$RTRUE, GPRC:$RFALSE))], s_cmov>; def i : OForm4L<0x11, fun, !strconcat(asmstr, " $RCOND,$RTRUE,$RDEST"), [(set GPRC:$RDEST, (select (OpNode GPRC:$RCOND), immUExt8:$RTRUE, GPRC:$RFALSE))], s_cmov>; } defm CMOVEQ : cmov_inst<0x24, "cmoveq", CmpOpFrag<(seteq node:$R, 0)>>; defm CMOVNE : cmov_inst<0x26, "cmovne", CmpOpFrag<(setne node:$R, 0)>>; defm CMOVLT : cmov_inst<0x44, "cmovlt", CmpOpFrag<(setlt node:$R, 0)>>; defm CMOVLE : cmov_inst<0x64, "cmovle", CmpOpFrag<(setle node:$R, 0)>>; defm CMOVGT : cmov_inst<0x66, "cmovgt", CmpOpFrag<(setgt node:$R, 0)>>; defm CMOVGE : cmov_inst<0x46, "cmovge", CmpOpFrag<(setge node:$R, 0)>>; defm CMOVLBC : cmov_inst<0x16, "cmovlbc", CmpOpFrag<(xor node:$R, 1)>>; defm CMOVLBS : cmov_inst<0x14, "cmovlbs", CmpOpFrag<(and node:$R, 1)>>; //General pattern for cmov def : Pat<(select GPRC:$which, GPRC:$src1, GPRC:$src2), (CMOVNEr GPRC:$src2, GPRC:$src1, GPRC:$which)>; def : Pat<(select GPRC:$which, GPRC:$src1, immUExt8:$src2), (CMOVEQi GPRC:$src1, immUExt8:$src2, GPRC:$which)>; //Invert sense when we can for constants: def : Pat<(select (setne GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE), (CMOVEQi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>; def : Pat<(select (setgt GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE), (CMOVLEi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>; def : Pat<(select (setge GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE), (CMOVLTi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>; def : Pat<(select (setlt GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE), (CMOVGEi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>; def : Pat<(select (setle GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE), (CMOVGTi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>; multiclass all_inst<bits<6> opc, bits<7> funl, bits<7> funq, string asmstr, PatFrag OpNode, InstrItinClass itin> { def Lr : OForm< opc, funl, !strconcat(asmstr, "l $RA,$RB,$RC"), [(set GPRC:$RC, (intop (OpNode GPRC:$RA, GPRC:$RB)))], itin>; def Li : OFormL<opc, funl, !strconcat(asmstr, "l $RA,$L,$RC"), [(set GPRC:$RC, (intop (OpNode GPRC:$RA, immUExt8:$L)))], itin>; def Qr : OForm< opc, funq, !strconcat(asmstr, "q $RA,$RB,$RC"), [(set GPRC:$RC, (OpNode GPRC:$RA, GPRC:$RB))], itin>; def Qi : OFormL<opc, funq, !strconcat(asmstr, "q $RA,$L,$RC"), [(set GPRC:$RC, (OpNode GPRC:$RA, immUExt8:$L))], itin>; } defm MUL : all_inst<0x13, 0x00, 0x20, "mul", BinOpFrag<(mul node:$LHS, node:$RHS)>, s_imul>; defm ADD : all_inst<0x10, 0x00, 0x20, "add", BinOpFrag<(add node:$LHS, node:$RHS)>, s_iadd>; defm S4ADD : all_inst<0x10, 0x02, 0x22, "s4add", add4, s_iadd>; defm S8ADD : all_inst<0x10, 0x12, 0x32, "s8add", add8, s_iadd>; defm S4SUB : all_inst<0x10, 0x0B, 0x2B, "s4sub", sub4, s_iadd>; defm S8SUB : all_inst<0x10, 0x1B, 0x3B, "s8sub", sub8, s_iadd>; defm SUB : all_inst<0x10, 0x09, 0x29, "sub", BinOpFrag<(sub node:$LHS, node:$RHS)>, s_iadd>; //Const cases since legalize does sub x, int -> add x, inv(int) + 1 def : Pat<(intop (add GPRC:$RA, immUExt8neg:$L)), (SUBLi GPRC:$RA, immUExt8neg:$L)>; def : Pat<(add GPRC:$RA, immUExt8neg:$L), (SUBQi GPRC:$RA, immUExt8neg:$L)>; def : Pat<(intop (add4 GPRC:$RA, immUExt8neg:$L)), (S4SUBLi GPRC:$RA, immUExt8neg:$L)>; def : Pat<(add4 GPRC:$RA, immUExt8neg:$L), (S4SUBQi GPRC:$RA, immUExt8neg:$L)>; def : Pat<(intop (add8 GPRC:$RA, immUExt8neg:$L)), (S8SUBLi GPRC:$RA, immUExt8neg:$L)>; def : Pat<(add8 GPRC:$RA, immUExt8neg:$L), (S8SUBQi GPRC:$RA, immUExt8neg:$L)>; multiclass log_inst<bits<6> opc, bits<7> fun, string asmstr, SDNode OpNode, InstrItinClass itin> { def r : OForm<opc, fun, !strconcat(asmstr, " $RA,$RB,$RC"), [(set GPRC:$RC, (OpNode GPRC:$RA, GPRC:$RB))], itin>; def i : OFormL<opc, fun, !strconcat(asmstr, " $RA,$L,$RC"), [(set GPRC:$RC, (OpNode GPRC:$RA, immUExt8:$L))], itin>; } multiclass inv_inst<bits<6> opc, bits<7> fun, string asmstr, SDNode OpNode, InstrItinClass itin> { def r : OForm<opc, fun, !strconcat(asmstr, " $RA,$RB,$RC"), [(set GPRC:$RC, (OpNode GPRC:$RA, (not GPRC:$RB)))], itin>; def i : OFormL<opc, fun, !strconcat(asmstr, " $RA,$L,$RC"), [(set GPRC:$RC, (OpNode GPRC:$RA, immUExt8inv:$L))], itin>; } defm AND : log_inst<0x11, 0x00, "and", and, s_ilog>; defm BIC : inv_inst<0x11, 0x08, "bic", and, s_ilog>; defm BIS : log_inst<0x11, 0x20, "bis", or, s_ilog>; defm ORNOT : inv_inst<0x11, 0x28, "ornot", or, s_ilog>; defm XOR : log_inst<0x11, 0x40, "xor", xor, s_ilog>; defm EQV : inv_inst<0x11, 0x48, "eqv", xor, s_ilog>; defm SL : log_inst<0x12, 0x39, "sll", shl, s_ishf>; defm SRA : log_inst<0x12, 0x3c, "sra", sra, s_ishf>; defm SRL : log_inst<0x12, 0x34, "srl", srl, s_ishf>; defm UMULH : log_inst<0x13, 0x30, "umulh", mulhu, s_imul>; def CTLZ : OForm2<0x1C, 0x32, "CTLZ $RB,$RC", [(set GPRC:$RC, (ctlz GPRC:$RB))], s_imisc>; def CTPOP : OForm2<0x1C, 0x30, "CTPOP $RB,$RC", [(set GPRC:$RC, (ctpop GPRC:$RB))], s_imisc>; def CTTZ : OForm2<0x1C, 0x33, "CTTZ $RB,$RC", [(set GPRC:$RC, (cttz GPRC:$RB))], s_imisc>; def EXTBL : OForm< 0x12, 0x06, "EXTBL $RA,$RB,$RC", [(set GPRC:$RC, (and (srl GPRC:$RA, (shl GPRC:$RB, 3)), 255))], s_ishf>; def EXTWL : OForm< 0x12, 0x16, "EXTWL $RA,$RB,$RC", [(set GPRC:$RC, (and (srl GPRC:$RA, (shl GPRC:$RB, 3)), 65535))], s_ishf>; def EXTLL : OForm< 0x12, 0x26, "EXTLL $RA,$RB,$RC", [(set GPRC:$RC, (and (srl GPRC:$RA, (shl GPRC:$RB, 3)), 4294967295))], s_ishf>; def SEXTB : OForm2<0x1C, 0x00, "sextb $RB,$RC", [(set GPRC:$RC, (sext_inreg GPRC:$RB, i8))], s_ishf>; def SEXTW : OForm2<0x1C, 0x01, "sextw $RB,$RC", [(set GPRC:$RC, (sext_inreg GPRC:$RB, i16))], s_ishf>; //def EXTBLi : OFormL<0x12, 0x06, "EXTBL $RA,$L,$RC", []>; //Extract byte low //def EXTLH : OForm< 0x12, 0x6A, "EXTLH $RA,$RB,$RC", []>; //Extract longword high //def EXTLHi : OFormL<0x12, 0x6A, "EXTLH $RA,$L,$RC", []>; //Extract longword high //def EXTLLi : OFormL<0x12, 0x26, "EXTLL $RA,$L,$RC", []>; //Extract longword low //def EXTQH : OForm< 0x12, 0x7A, "EXTQH $RA,$RB,$RC", []>; //Extract quadword high //def EXTQHi : OFormL<0x12, 0x7A, "EXTQH $RA,$L,$RC", []>; //Extract quadword high //def EXTQ : OForm< 0x12, 0x36, "EXTQ $RA,$RB,$RC", []>; //Extract quadword low //def EXTQi : OFormL<0x12, 0x36, "EXTQ $RA,$L,$RC", []>; //Extract quadword low //def EXTWH : OForm< 0x12, 0x5A, "EXTWH $RA,$RB,$RC", []>; //Extract word high //def EXTWHi : OFormL<0x12, 0x5A, "EXTWH $RA,$L,$RC", []>; //Extract word high //def EXTWLi : OFormL<0x12, 0x16, "EXTWL $RA,$L,$RC", []>; //Extract word low //def INSBL : OForm< 0x12, 0x0B, "INSBL $RA,$RB,$RC", []>; //Insert byte low //def INSBLi : OFormL<0x12, 0x0B, "INSBL $RA,$L,$RC", []>; //Insert byte low //def INSLH : OForm< 0x12, 0x67, "INSLH $RA,$RB,$RC", []>; //Insert longword high //def INSLHi : OFormL<0x12, 0x67, "INSLH $RA,$L,$RC", []>; //Insert longword high //def INSLL : OForm< 0x12, 0x2B, "INSLL $RA,$RB,$RC", []>; //Insert longword low //def INSLLi : OFormL<0x12, 0x2B, "INSLL $RA,$L,$RC", []>; //Insert longword low //def INSQH : OForm< 0x12, 0x77, "INSQH $RA,$RB,$RC", []>; //Insert quadword high //def INSQHi : OFormL<0x12, 0x77, "INSQH $RA,$L,$RC", []>; //Insert quadword high //def INSQL : OForm< 0x12, 0x3B, "INSQL $RA,$RB,$RC", []>; //Insert quadword low //def INSQLi : OFormL<0x12, 0x3B, "INSQL $RA,$L,$RC", []>; //Insert quadword low //def INSWH : OForm< 0x12, 0x57, "INSWH $RA,$RB,$RC", []>; //Insert word high //def INSWHi : OFormL<0x12, 0x57, "INSWH $RA,$L,$RC", []>; //Insert word high //def INSWL : OForm< 0x12, 0x1B, "INSWL $RA,$RB,$RC", []>; //Insert word low //def INSWLi : OFormL<0x12, 0x1B, "INSWL $RA,$L,$RC", []>; //Insert word low //def MSKBL : OForm< 0x12, 0x02, "MSKBL $RA,$RB,$RC", []>; //Mask byte low //def MSKBLi : OFormL<0x12, 0x02, "MSKBL $RA,$L,$RC", []>; //Mask byte low //def MSKLH : OForm< 0x12, 0x62, "MSKLH $RA,$RB,$RC", []>; //Mask longword high //def MSKLHi : OFormL<0x12, 0x62, "MSKLH $RA,$L,$RC", []>; //Mask longword high //def MSKLL : OForm< 0x12, 0x22, "MSKLL $RA,$RB,$RC", []>; //Mask longword low //def MSKLLi : OFormL<0x12, 0x22, "MSKLL $RA,$L,$RC", []>; //Mask longword low //def MSKQH : OForm< 0x12, 0x72, "MSKQH $RA,$RB,$RC", []>; //Mask quadword high //def MSKQHi : OFormL<0x12, 0x72, "MSKQH $RA,$L,$RC", []>; //Mask quadword high //def MSKQL : OForm< 0x12, 0x32, "MSKQL $RA,$RB,$RC", []>; //Mask quadword low //def MSKQLi : OFormL<0x12, 0x32, "MSKQL $RA,$L,$RC", []>; //Mask quadword low //def MSKWH : OForm< 0x12, 0x52, "MSKWH $RA,$RB,$RC", []>; //Mask word high //def MSKWHi : OFormL<0x12, 0x52, "MSKWH $RA,$L,$RC", []>; //Mask word high //def MSKWL : OForm< 0x12, 0x12, "MSKWL $RA,$RB,$RC", []>; //Mask word low //def MSKWLi : OFormL<0x12, 0x12, "MSKWL $RA,$L,$RC", []>; //Mask word low def ZAPNOTi : OFormL<0x12, 0x31, "zapnot $RA,$L,$RC", [], s_ishf>; // Define the pattern that produces ZAPNOTi. def : Pat<(zappat:$imm GPRC:$RA), (ZAPNOTi GPRC:$RA, (iZAPX GPRC:$imm))>; //Comparison, int //So this is a waste of what this instruction can do, but it still saves something def CMPBGE : OForm< 0x10, 0x0F, "cmpbge $RA,$RB,$RC", [(set GPRC:$RC, (setuge (and GPRC:$RA, 255), (and GPRC:$RB, 255)))], s_ilog>; def CMPBGEi : OFormL<0x10, 0x0F, "cmpbge $RA,$L,$RC", [(set GPRC:$RC, (setuge (and GPRC:$RA, 255), immUExt8:$L))], s_ilog>; def CMPEQ : OForm< 0x10, 0x2D, "cmpeq $RA,$RB,$RC", [(set GPRC:$RC, (seteq GPRC:$RA, GPRC:$RB))], s_iadd>; def CMPEQi : OFormL<0x10, 0x2D, "cmpeq $RA,$L,$RC", [(set GPRC:$RC, (seteq GPRC:$RA, immUExt8:$L))], s_iadd>; def CMPLE : OForm< 0x10, 0x6D, "cmple $RA,$RB,$RC", [(set GPRC:$RC, (setle GPRC:$RA, GPRC:$RB))], s_iadd>; def CMPLEi : OFormL<0x10, 0x6D, "cmple $RA,$L,$RC", [(set GPRC:$RC, (setle GPRC:$RA, immUExt8:$L))], s_iadd>; def CMPLT : OForm< 0x10, 0x4D, "cmplt $RA,$RB,$RC", [(set GPRC:$RC, (setlt GPRC:$RA, GPRC:$RB))], s_iadd>; def CMPLTi : OFormL<0x10, 0x4D, "cmplt $RA,$L,$RC", [(set GPRC:$RC, (setlt GPRC:$RA, immUExt8:$L))], s_iadd>; def CMPULE : OForm< 0x10, 0x3D, "cmpule $RA,$RB,$RC", [(set GPRC:$RC, (setule GPRC:$RA, GPRC:$RB))], s_iadd>; def CMPULEi : OFormL<0x10, 0x3D, "cmpule $RA,$L,$RC", [(set GPRC:$RC, (setule GPRC:$RA, immUExt8:$L))], s_iadd>; def CMPULT : OForm< 0x10, 0x1D, "cmpult $RA,$RB,$RC", [(set GPRC:$RC, (setult GPRC:$RA, GPRC:$RB))], s_iadd>; def CMPULTi : OFormL<0x10, 0x1D, "cmpult $RA,$L,$RC", [(set GPRC:$RC, (setult GPRC:$RA, immUExt8:$L))], s_iadd>; //Patterns for unsupported int comparisons def : Pat<(setueq GPRC:$X, GPRC:$Y), (CMPEQ GPRC:$X, GPRC:$Y)>; def : Pat<(setueq GPRC:$X, immUExt8:$Y), (CMPEQi GPRC:$X, immUExt8:$Y)>; def : Pat<(setugt GPRC:$X, GPRC:$Y), (CMPULT GPRC:$Y, GPRC:$X)>; def : Pat<(setugt immUExt8:$X, GPRC:$Y), (CMPULTi GPRC:$Y, immUExt8:$X)>; def : Pat<(setuge GPRC:$X, GPRC:$Y), (CMPULE GPRC:$Y, GPRC:$X)>; def : Pat<(setuge immUExt8:$X, GPRC:$Y), (CMPULEi GPRC:$Y, immUExt8:$X)>; def : Pat<(setgt GPRC:$X, GPRC:$Y), (CMPLT GPRC:$Y, GPRC:$X)>; def : Pat<(setgt immUExt8:$X, GPRC:$Y), (CMPLTi GPRC:$Y, immUExt8:$X)>; def : Pat<(setge GPRC:$X, GPRC:$Y), (CMPLE GPRC:$Y, GPRC:$X)>; def : Pat<(setge immUExt8:$X, GPRC:$Y), (CMPLEi GPRC:$Y, immUExt8:$X)>; def : Pat<(setne GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>; def : Pat<(setne GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQi GPRC:$X, immUExt8:$Y), 0)>; def : Pat<(setune GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>; def : Pat<(setune GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQ GPRC:$X, immUExt8:$Y), 0)>; let isReturn = 1, isTerminator = 1, isBarrier = 1, Ra = 31, Rb = 26, disp = 1, Uses = [R26] in { def RETDAG : MbrForm< 0x1A, 0x02, (ins), "ret $$31,($$26),1", s_jsr>; //Return from subroutine def RETDAGp : MbrpForm< 0x1A, 0x02, (ins), "ret $$31,($$26),1", [(retflag)], s_jsr>; //Return from subroutine } let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1, Ra = 31, disp = 0 in def JMP : MbrpForm< 0x1A, 0x00, (ins GPRC:$RS), "jmp $$31,($RS),0", [(brind GPRC:$RS)], s_jsr>; //Jump let isCall = 1, Ra = 26, Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, F0, F1, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R29] in { def BSR : BFormD<0x34, "bsr $$26,$$$DISP..ng", [], s_jsr>; //Branch to subroutine } let isCall = 1, Ra = 26, Rb = 27, disp = 0, Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, F0, F1, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R27, R29] in { def JSR : MbrForm< 0x1A, 0x01, (ins), "jsr $$26,($$27),0", s_jsr>; //Jump to subroutine } let isCall = 1, Ra = 23, Rb = 27, disp = 0, Defs = [R23, R24, R25, R27, R28], Uses = [R24, R25, R27] in def JSRs : MbrForm< 0x1A, 0x01, (ins), "jsr $$23,($$27),0", s_jsr>; //Jump to div or rem def JSR_COROUTINE : MbrForm< 0x1A, 0x03, (ins GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr_coroutine $RD,($RS),$DISP", s_jsr>; //Jump to subroutine return let OutOperandList = (outs GPRC:$RA), InOperandList = (ins s64imm:$DISP, GPRC:$RB) in { def LDQ : MForm<0x29, 1, "ldq $RA,$DISP($RB)", [(set GPRC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))], s_ild>; def LDQr : MForm<0x29, 1, "ldq $RA,$DISP($RB)\t\t!gprellow", [(set GPRC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_ild>; def LDL : MForm<0x28, 1, "ldl $RA,$DISP($RB)", [(set GPRC:$RA, (sextloadi32 (add GPRC:$RB, immSExt16:$DISP)))], s_ild>; def LDLr : MForm<0x28, 1, "ldl $RA,$DISP($RB)\t\t!gprellow", [(set GPRC:$RA, (sextloadi32 (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_ild>; def LDBU : MForm<0x0A, 1, "ldbu $RA,$DISP($RB)", [(set GPRC:$RA, (zextloadi8 (add GPRC:$RB, immSExt16:$DISP)))], s_ild>; def LDBUr : MForm<0x0A, 1, "ldbu $RA,$DISP($RB)\t\t!gprellow", [(set GPRC:$RA, (zextloadi8 (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_ild>; def LDWU : MForm<0x0C, 1, "ldwu $RA,$DISP($RB)", [(set GPRC:$RA, (zextloadi16 (add GPRC:$RB, immSExt16:$DISP)))], s_ild>; def LDWUr : MForm<0x0C, 1, "ldwu $RA,$DISP($RB)\t\t!gprellow", [(set GPRC:$RA, (zextloadi16 (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_ild>; } let OutOperandList = (outs), InOperandList = (ins GPRC:$RA, s64imm:$DISP, GPRC:$RB) in { def STB : MForm<0x0E, 0, "stb $RA,$DISP($RB)", [(truncstorei8 GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_ist>; def STBr : MForm<0x0E, 0, "stb $RA,$DISP($RB)\t\t!gprellow", [(truncstorei8 GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_ist>; def STW : MForm<0x0D, 0, "stw $RA,$DISP($RB)", [(truncstorei16 GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_ist>; def STWr : MForm<0x0D, 0, "stw $RA,$DISP($RB)\t\t!gprellow", [(truncstorei16 GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_ist>; def STL : MForm<0x2C, 0, "stl $RA,$DISP($RB)", [(truncstorei32 GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_ist>; def STLr : MForm<0x2C, 0, "stl $RA,$DISP($RB)\t\t!gprellow", [(truncstorei32 GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_ist>; def STQ : MForm<0x2D, 0, "stq $RA,$DISP($RB)", [(store GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_ist>; def STQr : MForm<0x2D, 0, "stq $RA,$DISP($RB)\t\t!gprellow", [(store GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_ist>; } //Load address let OutOperandList = (outs GPRC:$RA), InOperandList = (ins s64imm:$DISP, GPRC:$RB) in { def LDA : MForm<0x08, 0, "lda $RA,$DISP($RB)", [(set GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_lda>; def LDAr : MForm<0x08, 0, "lda $RA,$DISP($RB)\t\t!gprellow", [(set GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_lda>; //Load address def LDAH : MForm<0x09, 0, "ldah $RA,$DISP($RB)", [], s_lda>; //Load address high def LDAHr : MForm<0x09, 0, "ldah $RA,$DISP($RB)\t\t!gprelhigh", [(set GPRC:$RA, (Alpha_gprelhi tglobaladdr:$DISP, GPRC:$RB))], s_lda>; //Load address high } let OutOperandList = (outs), InOperandList = (ins F4RC:$RA, s64imm:$DISP, GPRC:$RB) in { def STS : MForm<0x26, 0, "sts $RA,$DISP($RB)", [(store F4RC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_fst>; def STSr : MForm<0x26, 0, "sts $RA,$DISP($RB)\t\t!gprellow", [(store F4RC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_fst>; } let OutOperandList = (outs F4RC:$RA), InOperandList = (ins s64imm:$DISP, GPRC:$RB) in { def LDS : MForm<0x22, 1, "lds $RA,$DISP($RB)", [(set F4RC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))], s_fld>; def LDSr : MForm<0x22, 1, "lds $RA,$DISP($RB)\t\t!gprellow", [(set F4RC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_fld>; } let OutOperandList = (outs), InOperandList = (ins F8RC:$RA, s64imm:$DISP, GPRC:$RB) in { def STT : MForm<0x27, 0, "stt $RA,$DISP($RB)", [(store F8RC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_fst>; def STTr : MForm<0x27, 0, "stt $RA,$DISP($RB)\t\t!gprellow", [(store F8RC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_fst>; } let OutOperandList = (outs F8RC:$RA), InOperandList = (ins s64imm:$DISP, GPRC:$RB) in { def LDT : MForm<0x23, 1, "ldt $RA,$DISP($RB)", [(set F8RC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))], s_fld>; def LDTr : MForm<0x23, 1, "ldt $RA,$DISP($RB)\t\t!gprellow", [(set F8RC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_fld>; } //constpool rels def : Pat<(i64 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))), (LDQr tconstpool:$DISP, GPRC:$RB)>; def : Pat<(i64 (sextloadi32 (Alpha_gprello tconstpool:$DISP, GPRC:$RB))), (LDLr tconstpool:$DISP, GPRC:$RB)>; def : Pat<(i64 (zextloadi8 (Alpha_gprello tconstpool:$DISP, GPRC:$RB))), (LDBUr tconstpool:$DISP, GPRC:$RB)>; def : Pat<(i64 (zextloadi16 (Alpha_gprello tconstpool:$DISP, GPRC:$RB))), (LDWUr tconstpool:$DISP, GPRC:$RB)>; def : Pat<(i64 (Alpha_gprello tconstpool:$DISP, GPRC:$RB)), (LDAr tconstpool:$DISP, GPRC:$RB)>; def : Pat<(i64 (Alpha_gprelhi tconstpool:$DISP, GPRC:$RB)), (LDAHr tconstpool:$DISP, GPRC:$RB)>; def : Pat<(f32 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))), (LDSr tconstpool:$DISP, GPRC:$RB)>; def : Pat<(f64 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))), (LDTr tconstpool:$DISP, GPRC:$RB)>; //jumptable rels def : Pat<(i64 (Alpha_gprelhi tjumptable:$DISP, GPRC:$RB)), (LDAHr tjumptable:$DISP, GPRC:$RB)>; def : Pat<(i64 (Alpha_gprello tjumptable:$DISP, GPRC:$RB)), (LDAr tjumptable:$DISP, GPRC:$RB)>; //misc ext patterns def : Pat<(i64 (extloadi8 (add GPRC:$RB, immSExt16:$DISP))), (LDBU immSExt16:$DISP, GPRC:$RB)>; def : Pat<(i64 (extloadi16 (add GPRC:$RB, immSExt16:$DISP))), (LDWU immSExt16:$DISP, GPRC:$RB)>; def : Pat<(i64 (extloadi32 (add GPRC:$RB, immSExt16:$DISP))), (LDL immSExt16:$DISP, GPRC:$RB)>; //0 disp patterns def : Pat<(i64 (load GPRC:$addr)), (LDQ 0, GPRC:$addr)>; def : Pat<(f64 (load GPRC:$addr)), (LDT 0, GPRC:$addr)>; def : Pat<(f32 (load GPRC:$addr)), (LDS 0, GPRC:$addr)>; def : Pat<(i64 (sextloadi32 GPRC:$addr)), (LDL 0, GPRC:$addr)>; def : Pat<(i64 (zextloadi16 GPRC:$addr)), (LDWU 0, GPRC:$addr)>; def : Pat<(i64 (zextloadi8 GPRC:$addr)), (LDBU 0, GPRC:$addr)>; def : Pat<(i64 (extloadi8 GPRC:$addr)), (LDBU 0, GPRC:$addr)>; def : Pat<(i64 (extloadi16 GPRC:$addr)), (LDWU 0, GPRC:$addr)>; def : Pat<(i64 (extloadi32 GPRC:$addr)), (LDL 0, GPRC:$addr)>; def : Pat<(store GPRC:$DATA, GPRC:$addr), (STQ GPRC:$DATA, 0, GPRC:$addr)>; def : Pat<(store F8RC:$DATA, GPRC:$addr), (STT F8RC:$DATA, 0, GPRC:$addr)>; def : Pat<(store F4RC:$DATA, GPRC:$addr), (STS F4RC:$DATA, 0, GPRC:$addr)>; def : Pat<(truncstorei32 GPRC:$DATA, GPRC:$addr), (STL GPRC:$DATA, 0, GPRC:$addr)>; def : Pat<(truncstorei16 GPRC:$DATA, GPRC:$addr), (STW GPRC:$DATA, 0, GPRC:$addr)>; def : Pat<(truncstorei8 GPRC:$DATA, GPRC:$addr), (STB GPRC:$DATA, 0, GPRC:$addr)>; //load address, rellocated gpdist form let OutOperandList = (outs GPRC:$RA), InOperandList = (ins s16imm:$DISP, GPRC:$RB, s16imm:$NUM), mayLoad = 1 in { def LDAg : MForm<0x08, 1, "lda $RA,0($RB)\t\t!gpdisp!$NUM", [], s_lda>; //Load address def LDAHg : MForm<0x09, 1, "ldah $RA,0($RB)\t\t!gpdisp!$NUM", [], s_lda>; //Load address } //Load quad, rellocated literal form let OutOperandList = (outs GPRC:$RA), InOperandList = (ins s64imm:$DISP, GPRC:$RB) in def LDQl : MForm<0x29, 1, "ldq $RA,$DISP($RB)\t\t!literal", [(set GPRC:$RA, (Alpha_rellit tglobaladdr:$DISP, GPRC:$RB))], s_ild>; def : Pat<(Alpha_rellit texternalsym:$ext, GPRC:$RB), (LDQl texternalsym:$ext, GPRC:$RB)>; let OutOperandList = (outs GPRC:$RR), InOperandList = (ins GPRC:$RA, s64imm:$DISP, GPRC:$RB), Constraints = "$RA = $RR", DisableEncoding = "$RR" in { def STQ_C : MForm<0x2F, 0, "stq_l $RA,$DISP($RB)", [], s_ist>; def STL_C : MForm<0x2E, 0, "stl_l $RA,$DISP($RB)", [], s_ist>; } let OutOperandList = (outs GPRC:$RA), InOperandList = (ins s64imm:$DISP, GPRC:$RB), mayLoad = 1 in { def LDQ_L : MForm<0x2B, 1, "ldq_l $RA,$DISP($RB)", [], s_ild>; def LDL_L : MForm<0x2A, 1, "ldl_l $RA,$DISP($RB)", [], s_ild>; } def RPCC : MfcForm<0x18, 0xC000, "rpcc $RA", s_rpcc>; //Read process cycle counter def MB : MfcPForm<0x18, 0x4000, "mb", s_imisc>; //memory barrier def WMB : MfcPForm<0x18, 0x4400, "wmb", s_imisc>; //write memory barrier def : Pat<(membarrier (i64 imm), (i64 imm), (i64 imm), (i64 1), (i64 imm)), (WMB)>; def : Pat<(membarrier (i64 imm), (i64 imm), (i64 imm), (i64 imm), (i64 imm)), (MB)>; def : Pat<(atomic_fence (imm), (imm)), (MB)>; //Basic Floating point ops //Floats let OutOperandList = (outs F4RC:$RC), InOperandList = (ins F4RC:$RB), Fa = 31 in def SQRTS : FPForm<0x14, 0x58B, "sqrts/su $RB,$RC", [(set F4RC:$RC, (fsqrt F4RC:$RB))], s_fsqrts>; let OutOperandList = (outs F4RC:$RC), InOperandList = (ins F4RC:$RA, F4RC:$RB) in { def ADDS : FPForm<0x16, 0x580, "adds/su $RA,$RB,$RC", [(set F4RC:$RC, (fadd F4RC:$RA, F4RC:$RB))], s_fadd>; def SUBS : FPForm<0x16, 0x581, "subs/su $RA,$RB,$RC", [(set F4RC:$RC, (fsub F4RC:$RA, F4RC:$RB))], s_fadd>; def DIVS : FPForm<0x16, 0x583, "divs/su $RA,$RB,$RC", [(set F4RC:$RC, (fdiv F4RC:$RA, F4RC:$RB))], s_fdivs>; def MULS : FPForm<0x16, 0x582, "muls/su $RA,$RB,$RC", [(set F4RC:$RC, (fmul F4RC:$RA, F4RC:$RB))], s_fmul>; def CPYSS : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC", [(set F4RC:$RC, (fcopysign F4RC:$RB, F4RC:$RA))], s_fadd>; def CPYSES : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[], s_fadd>; //Copy sign and exponent def CPYSNS : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC", [(set F4RC:$RC, (fneg (fcopysign F4RC:$RB, F4RC:$RA)))], s_fadd>; } //Doubles let OutOperandList = (outs F8RC:$RC), InOperandList = (ins F8RC:$RB), Fa = 31 in def SQRTT : FPForm<0x14, 0x5AB, "sqrtt/su $RB,$RC", [(set F8RC:$RC, (fsqrt F8RC:$RB))], s_fsqrtt>; let OutOperandList = (outs F8RC:$RC), InOperandList = (ins F8RC:$RA, F8RC:$RB) in { def ADDT : FPForm<0x16, 0x5A0, "addt/su $RA,$RB,$RC", [(set F8RC:$RC, (fadd F8RC:$RA, F8RC:$RB))], s_fadd>; def SUBT : FPForm<0x16, 0x5A1, "subt/su $RA,$RB,$RC", [(set F8RC:$RC, (fsub F8RC:$RA, F8RC:$RB))], s_fadd>; def DIVT : FPForm<0x16, 0x5A3, "divt/su $RA,$RB,$RC", [(set F8RC:$RC, (fdiv F8RC:$RA, F8RC:$RB))], s_fdivt>; def MULT : FPForm<0x16, 0x5A2, "mult/su $RA,$RB,$RC", [(set F8RC:$RC, (fmul F8RC:$RA, F8RC:$RB))], s_fmul>; def CPYST : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC", [(set F8RC:$RC, (fcopysign F8RC:$RB, F8RC:$RA))], s_fadd>; def CPYSET : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[], s_fadd>; //Copy sign and exponent def CPYSNT : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC", [(set F8RC:$RC, (fneg (fcopysign F8RC:$RB, F8RC:$RA)))], s_fadd>; def CMPTEQ : FPForm<0x16, 0x5A5, "cmpteq/su $RA,$RB,$RC", [], s_fadd>; // [(set F8RC:$RC, (seteq F8RC:$RA, F8RC:$RB))]>; def CMPTLE : FPForm<0x16, 0x5A7, "cmptle/su $RA,$RB,$RC", [], s_fadd>; // [(set F8RC:$RC, (setle F8RC:$RA, F8RC:$RB))]>; def CMPTLT : FPForm<0x16, 0x5A6, "cmptlt/su $RA,$RB,$RC", [], s_fadd>; // [(set F8RC:$RC, (setlt F8RC:$RA, F8RC:$RB))]>; def CMPTUN : FPForm<0x16, 0x5A4, "cmptun/su $RA,$RB,$RC", [], s_fadd>; // [(set F8RC:$RC, (setuo F8RC:$RA, F8RC:$RB))]>; } //More CPYS forms: let OutOperandList = (outs F8RC:$RC), InOperandList = (ins F4RC:$RA, F8RC:$RB) in { def CPYSTs : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC", [(set F8RC:$RC, (fcopysign F8RC:$RB, F4RC:$RA))], s_fadd>; def CPYSNTs : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC", [(set F8RC:$RC, (fneg (fcopysign F8RC:$RB, F4RC:$RA)))], s_fadd>; } let OutOperandList = (outs F4RC:$RC), InOperandList = (ins F8RC:$RA, F4RC:$RB) in { def CPYSSt : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC", [(set F4RC:$RC, (fcopysign F4RC:$RB, F8RC:$RA))], s_fadd>; def CPYSESt : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[], s_fadd>; //Copy sign and exponent def CPYSNSt : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC", [(set F4RC:$RC, (fneg (fcopysign F4RC:$RB, F8RC:$RA)))], s_fadd>; } //conditional moves, floats let OutOperandList = (outs F4RC:$RDEST), InOperandList = (ins F4RC:$RFALSE, F4RC:$RTRUE, F8RC:$RCOND), Constraints = "$RTRUE = $RDEST" in { def FCMOVEQS : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RTRUE,$RDEST", [], s_fcmov>; //FCMOVE if = zero def FCMOVGES : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RTRUE,$RDEST", [], s_fcmov>; //FCMOVE if >= zero def FCMOVGTS : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RTRUE,$RDEST", [], s_fcmov>; //FCMOVE if > zero def FCMOVLES : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RTRUE,$RDEST", [], s_fcmov>; //FCMOVE if <= zero def FCMOVLTS : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RTRUE,$RDEST", [], s_fcmov>; // FCMOVE if < zero def FCMOVNES : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RTRUE,$RDEST", [], s_fcmov>; //FCMOVE if != zero } //conditional moves, doubles let OutOperandList = (outs F8RC:$RDEST), InOperandList = (ins F8RC:$RFALSE, F8RC:$RTRUE, F8RC:$RCOND), Constraints = "$RTRUE = $RDEST" in { def FCMOVEQT : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RTRUE,$RDEST", [], s_fcmov>; def FCMOVGET : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RTRUE,$RDEST", [], s_fcmov>; def FCMOVGTT : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RTRUE,$RDEST", [], s_fcmov>; def FCMOVLET : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RTRUE,$RDEST", [], s_fcmov>; def FCMOVLTT : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RTRUE,$RDEST", [], s_fcmov>; def FCMOVNET : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RTRUE,$RDEST", [], s_fcmov>; } //misc FP selects //Select double def : Pat<(select (seteq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setoeq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setueq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setne F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVEQT F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setone F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVEQT F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setune F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVEQT F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setgt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setogt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setugt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setge F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setoge F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setuge F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setlt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setolt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setult F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setle F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setole F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setule F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf), (FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>; //Select single def : Pat<(select (seteq F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setoeq F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setueq F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setne F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVEQS F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setone F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVEQS F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setune F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVEQS F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setgt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setogt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setugt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setge F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setoge F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setuge F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>; def : Pat<(select (setlt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setolt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setult F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setle F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setole F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>; def : Pat<(select (setule F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf), (FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>; let OutOperandList = (outs GPRC:$RC), InOperandList = (ins F4RC:$RA), Fb = 31 in def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC", [(set GPRC:$RC, (bitconvert F4RC:$RA))], s_ftoi>; //Floating to integer move, S_floating let OutOperandList = (outs GPRC:$RC), InOperandList = (ins F8RC:$RA), Fb = 31 in def FTOIT : FPForm<0x1C, 0x070, "ftoit $RA,$RC", [(set GPRC:$RC, (bitconvert F8RC:$RA))], s_ftoi>; //Floating to integer move let OutOperandList = (outs F4RC:$RC), InOperandList = (ins GPRC:$RA), Fb = 31 in def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC", [(set F4RC:$RC, (bitconvert GPRC:$RA))], s_itof>; //Integer to floating move, S_floating let OutOperandList = (outs F8RC:$RC), InOperandList = (ins GPRC:$RA), Fb = 31 in def ITOFT : FPForm<0x14, 0x024, "itoft $RA,$RC", [(set F8RC:$RC, (bitconvert GPRC:$RA))], s_itof>; //Integer to floating move let OutOperandList = (outs F4RC:$RC), InOperandList = (ins F8RC:$RB), Fa = 31 in def CVTQS : FPForm<0x16, 0x7BC, "cvtqs/sui $RB,$RC", [(set F4RC:$RC, (Alpha_cvtqs F8RC:$RB))], s_fadd>; let OutOperandList = (outs F8RC:$RC), InOperandList = (ins F8RC:$RB), Fa = 31 in def CVTQT : FPForm<0x16, 0x7BE, "cvtqt/sui $RB,$RC", [(set F8RC:$RC, (Alpha_cvtqt F8RC:$RB))], s_fadd>; let OutOperandList = (outs F8RC:$RC), InOperandList = (ins F8RC:$RB), Fa = 31 in def CVTTQ : FPForm<0x16, 0x52F, "cvttq/svc $RB,$RC", [(set F8RC:$RC, (Alpha_cvttq F8RC:$RB))], s_fadd>; let OutOperandList = (outs F8RC:$RC), InOperandList = (ins F4RC:$RB), Fa = 31 in def CVTST : FPForm<0x16, 0x6AC, "cvtst/s $RB,$RC", [(set F8RC:$RC, (fextend F4RC:$RB))], s_fadd>; let OutOperandList = (outs F4RC:$RC), InOperandList = (ins F8RC:$RB), Fa = 31 in def CVTTS : FPForm<0x16, 0x7AC, "cvtts/sui $RB,$RC", [(set F4RC:$RC, (fround F8RC:$RB))], s_fadd>; def : Pat<(select GPRC:$RC, F8RC:$st, F8RC:$sf), (f64 (FCMOVEQT F8RC:$st, F8RC:$sf, (ITOFT GPRC:$RC)))>; def : Pat<(select GPRC:$RC, F4RC:$st, F4RC:$sf), (f32 (FCMOVEQS F4RC:$st, F4RC:$sf, (ITOFT GPRC:$RC)))>; ///////////////////////////////////////////////////////// //Branching ///////////////////////////////////////////////////////// class br_icc<bits<6> opc, string asmstr> : BFormN<opc, (ins u64imm:$opc, GPRC:$R, target:$dst), !strconcat(asmstr, " $R,$dst"), s_icbr>; class br_fcc<bits<6> opc, string asmstr> : BFormN<opc, (ins u64imm:$opc, F8RC:$R, target:$dst), !strconcat(asmstr, " $R,$dst"), s_fbr>; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in { let Ra = 31, isBarrier = 1 in def BR : BFormD<0x30, "br $$31,$DISP", [(br bb:$DISP)], s_ubr>; def COND_BRANCH_I : BFormN<0, (ins u64imm:$opc, GPRC:$R, target:$dst), "{:comment} COND_BRANCH imm:$opc, GPRC:$R, bb:$dst", s_icbr>; def COND_BRANCH_F : BFormN<0, (ins u64imm:$opc, F8RC:$R, target:$dst), "{:comment} COND_BRANCH imm:$opc, F8RC:$R, bb:$dst", s_fbr>; //Branches, int def BEQ : br_icc<0x39, "beq">; def BGE : br_icc<0x3E, "bge">; def BGT : br_icc<0x3F, "bgt">; def BLBC : br_icc<0x38, "blbc">; def BLBS : br_icc<0x3C, "blbs">; def BLE : br_icc<0x3B, "ble">; def BLT : br_icc<0x3A, "blt">; def BNE : br_icc<0x3D, "bne">; //Branches, float def FBEQ : br_fcc<0x31, "fbeq">; def FBGE : br_fcc<0x36, "fbge">; def FBGT : br_fcc<0x37, "fbgt">; def FBLE : br_fcc<0x33, "fble">; def FBLT : br_fcc<0x32, "fblt">; def FBNE : br_fcc<0x36, "fbne">; } //An ugly trick to get the opcode as an imm I can use def immBRCond : SDNodeXForm<imm, [{ switch((uint64_t)N->getZExtValue()) { default: assert(0 && "Unknown branch type"); case 0: return getI64Imm(Alpha::BEQ); case 1: return getI64Imm(Alpha::BNE); case 2: return getI64Imm(Alpha::BGE); case 3: return getI64Imm(Alpha::BGT); case 4: return getI64Imm(Alpha::BLE); case 5: return getI64Imm(Alpha::BLT); case 6: return getI64Imm(Alpha::BLBS); case 7: return getI64Imm(Alpha::BLBC); case 20: return getI64Imm(Alpha::FBEQ); case 21: return getI64Imm(Alpha::FBNE); case 22: return getI64Imm(Alpha::FBGE); case 23: return getI64Imm(Alpha::FBGT); case 24: return getI64Imm(Alpha::FBLE); case 25: return getI64Imm(Alpha::FBLT); } }]>; //Int cond patterns def : Pat<(brcond (seteq GPRC:$RA, 0), bb:$DISP), (COND_BRANCH_I (immBRCond 0), GPRC:$RA, bb:$DISP)>; def : Pat<(brcond (setge GPRC:$RA, 0), bb:$DISP), (COND_BRANCH_I (immBRCond 2), GPRC:$RA, bb:$DISP)>; def : Pat<(brcond (setgt GPRC:$RA, 0), bb:$DISP), (COND_BRANCH_I (immBRCond 3), GPRC:$RA, bb:$DISP)>; def : Pat<(brcond (and GPRC:$RA, 1), bb:$DISP), (COND_BRANCH_I (immBRCond 6), GPRC:$RA, bb:$DISP)>; def : Pat<(brcond (setle GPRC:$RA, 0), bb:$DISP), (COND_BRANCH_I (immBRCond 4), GPRC:$RA, bb:$DISP)>; def : Pat<(brcond (setlt GPRC:$RA, 0), bb:$DISP), (COND_BRANCH_I (immBRCond 5), GPRC:$RA, bb:$DISP)>; def : Pat<(brcond (setne GPRC:$RA, 0), bb:$DISP), (COND_BRANCH_I (immBRCond 1), GPRC:$RA, bb:$DISP)>; def : Pat<(brcond GPRC:$RA, bb:$DISP), (COND_BRANCH_I (immBRCond 1), GPRC:$RA, bb:$DISP)>; def : Pat<(brcond (setne GPRC:$RA, GPRC:$RB), bb:$DISP), (COND_BRANCH_I (immBRCond 0), (CMPEQ GPRC:$RA, GPRC:$RB), bb:$DISP)>; def : Pat<(brcond (setne GPRC:$RA, immUExt8:$L), bb:$DISP), (COND_BRANCH_I (immBRCond 0), (CMPEQi GPRC:$RA, immUExt8:$L), bb:$DISP)>; //FP cond patterns def : Pat<(brcond (seteq F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 20), F8RC:$RA, bb:$DISP)>; def : Pat<(brcond (setne F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 21), F8RC:$RA, bb:$DISP)>; def : Pat<(brcond (setge F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 22), F8RC:$RA, bb:$DISP)>; def : Pat<(brcond (setgt F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 23), F8RC:$RA, bb:$DISP)>; def : Pat<(brcond (setle F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 24), F8RC:$RA, bb:$DISP)>; def : Pat<(brcond (setlt F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 25), F8RC:$RA, bb:$DISP)>; def : Pat<(brcond (seteq F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setoeq F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setueq F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setlt F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setolt F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setult F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setle F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setole F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setule F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setgt F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RB, F8RC:$RA), bb:$DISP)>; def : Pat<(brcond (setogt F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RB, F8RC:$RA), bb:$DISP)>; def : Pat<(brcond (setugt F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RB, F8RC:$RA), bb:$DISP)>; def : Pat<(brcond (setge F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RB, F8RC:$RA), bb:$DISP)>; def : Pat<(brcond (setoge F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RB, F8RC:$RA), bb:$DISP)>; def : Pat<(brcond (setuge F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RB, F8RC:$RA), bb:$DISP)>; def : Pat<(brcond (setne F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 20), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setone F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 20), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setune F8RC:$RA, F8RC:$RB), bb:$DISP), (COND_BRANCH_F (immBRCond 20), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>; def : Pat<(brcond (setoeq F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 20), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setueq F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 20), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setoge F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 22), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setuge F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 22), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setogt F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 23), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setugt F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 23), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setole F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 24), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setule F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 24), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setolt F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 25), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setult F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 25), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setone F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 21), F8RC:$RA,bb:$DISP)>; def : Pat<(brcond (setune F8RC:$RA, immFPZ), bb:$DISP), (COND_BRANCH_F (immBRCond 21), F8RC:$RA,bb:$DISP)>; //End Branches //S_floating : IEEE Single //T_floating : IEEE Double //Unused instructions //Mnemonic Format Opcode Description //CALL_PAL Pcd 00 Trap to PALcode //ECB Mfc 18.E800 Evict cache block //EXCB Mfc 18.0400 Exception barrier //FETCH Mfc 18.8000 Prefetch data //FETCH_M Mfc 18.A000 Prefetch data, modify intent //LDQ_U Mem 0B Load unaligned quadword //MB Mfc 18.4000 Memory barrier //STQ_U Mem 0F Store unaligned quadword //TRAPB Mfc 18.0000 Trap barrier //WH64 Mfc 18.F800 Write hint 64 bytes //WMB Mfc 18.4400 Write memory barrier //MF_FPCR F-P 17.025 Move from FPCR //MT_FPCR F-P 17.024 Move to FPCR //There are in the Multimedia extensions, so let's not use them yet //def MAXSB8 : OForm<0x1C, 0x3E, "MAXSB8 $RA,$RB,$RC">; //Vector signed byte maximum //def MAXSW4 : OForm< 0x1C, 0x3F, "MAXSW4 $RA,$RB,$RC">; //Vector signed word maximum //def MAXUB8 : OForm<0x1C, 0x3C, "MAXUB8 $RA,$RB,$RC">; //Vector unsigned byte maximum //def MAXUW4 : OForm< 0x1C, 0x3D, "MAXUW4 $RA,$RB,$RC">; //Vector unsigned word maximum //def MINSB8 : OForm< 0x1C, 0x38, "MINSB8 $RA,$RB,$RC">; //Vector signed byte minimum //def MINSW4 : OForm< 0x1C, 0x39, "MINSW4 $RA,$RB,$RC">; //Vector signed word minimum //def MINUB8 : OForm< 0x1C, 0x3A, "MINUB8 $RA,$RB,$RC">; //Vector unsigned byte minimum //def MINUW4 : OForm< 0x1C, 0x3B, "MINUW4 $RA,$RB,$RC">; //Vector unsigned word minimum //def PERR : OForm< 0x1C, 0x31, "PERR $RA,$RB,$RC">; //Pixel error //def PKLB : OForm< 0x1C, 0x37, "PKLB $RA,$RB,$RC">; //Pack longwords to bytes //def PKWB : OForm<0x1C, 0x36, "PKWB $RA,$RB,$RC">; //Pack words to bytes //def UNPKBL : OForm< 0x1C, 0x35, "UNPKBL $RA,$RB,$RC">; //Unpack bytes to longwords //def UNPKBW : OForm< 0x1C, 0x34, "UNPKBW $RA,$RB,$RC">; //Unpack bytes to words //CVTLQ F-P 17.010 Convert longword to quadword //CVTQL F-P 17.030 Convert quadword to longword //Constant handling def immConst2Part : PatLeaf<(imm), [{ //true if imm fits in a LDAH LDA pair int64_t val = (int64_t)N->getZExtValue(); return (val <= IMM_FULLHIGH && val >= IMM_FULLLOW); }]>; def immConst2PartInt : PatLeaf<(imm), [{ //true if imm fits in a LDAH LDA pair with zeroext uint64_t uval = N->getZExtValue(); int32_t val32 = (int32_t)uval; return ((uval >> 32) == 0 && //empty upper bits val32 <= IMM_FULLHIGH); // val32 >= IMM_FULLLOW + IMM_LOW * IMM_MULT); //Always True }], SExt32>; def : Pat<(i64 immConst2Part:$imm), (LDA (LL16 immConst2Part:$imm), (LDAH (LH16 immConst2Part:$imm), R31))>; def : Pat<(i64 immSExt16:$imm), (LDA immSExt16:$imm, R31)>; def : Pat<(i64 immSExt16int:$imm), (ZAPNOTi (LDA (SExt16 immSExt16int:$imm), R31), 15)>; def : Pat<(i64 immConst2PartInt:$imm), (ZAPNOTi (LDA (LL16 (i64 (SExt32 immConst2PartInt:$imm))), (LDAH (LH16 (i64 (SExt32 immConst2PartInt:$imm))), R31)), 15)>; //TODO: I want to just define these like this! //def : Pat<(i64 0), // (R31)>; //def : Pat<(f64 0.0), // (F31)>; //def : Pat<(f64 -0.0), // (CPYSNT F31, F31)>; //def : Pat<(f32 0.0), // (F31)>; //def : Pat<(f32 -0.0), // (CPYSNS F31, F31)>; //Misc Patterns: def : Pat<(sext_inreg GPRC:$RB, i32), (ADDLi GPRC:$RB, 0)>; def : Pat<(fabs F8RC:$RB), (CPYST F31, F8RC:$RB)>; def : Pat<(fabs F4RC:$RB), (CPYSS F31, F4RC:$RB)>; def : Pat<(fneg F8RC:$RB), (CPYSNT F8RC:$RB, F8RC:$RB)>; def : Pat<(fneg F4RC:$RB), (CPYSNS F4RC:$RB, F4RC:$RB)>; def : Pat<(fcopysign F4RC:$A, (fneg F4RC:$B)), (CPYSNS F4RC:$B, F4RC:$A)>; def : Pat<(fcopysign F8RC:$A, (fneg F8RC:$B)), (CPYSNT F8RC:$B, F8RC:$A)>; def : Pat<(fcopysign F4RC:$A, (fneg F8RC:$B)), (CPYSNSt F8RC:$B, F4RC:$A)>; def : Pat<(fcopysign F8RC:$A, (fneg F4RC:$B)), (CPYSNTs F4RC:$B, F8RC:$A)>; //Yes, signed multiply high is ugly def : Pat<(mulhs GPRC:$RA, GPRC:$RB), (SUBQr (UMULHr GPRC:$RA, GPRC:$RB), (ADDQr (CMOVGEr GPRC:$RB, R31, GPRC:$RA), (CMOVGEr GPRC:$RA, R31, GPRC:$RB)))>; //Stupid crazy arithmetic stuff: let AddedComplexity = 1 in { def : Pat<(mul GPRC:$RA, 5), (S4ADDQr GPRC:$RA, GPRC:$RA)>; def : Pat<(mul GPRC:$RA, 9), (S8ADDQr GPRC:$RA, GPRC:$RA)>; def : Pat<(mul GPRC:$RA, 3), (S4SUBQr GPRC:$RA, GPRC:$RA)>; def : Pat<(mul GPRC:$RA, 7), (S8SUBQr GPRC:$RA, GPRC:$RA)>; //slight tree expansion if we are multiplying near to a power of 2 //n is above a power of 2 def : Pat<(mul GPRC:$RA, immRem1:$imm), (ADDQr (SLr GPRC:$RA, (nearP2X immRem1:$imm)), GPRC:$RA)>; def : Pat<(mul GPRC:$RA, immRem2:$imm), (ADDQr (SLr GPRC:$RA, (nearP2X immRem2:$imm)), (ADDQr GPRC:$RA, GPRC:$RA))>; def : Pat<(mul GPRC:$RA, immRem3:$imm), (ADDQr (SLr GPRC:$RA, (nearP2X immRem3:$imm)), (S4SUBQr GPRC:$RA, GPRC:$RA))>; def : Pat<(mul GPRC:$RA, immRem4:$imm), (S4ADDQr GPRC:$RA, (SLr GPRC:$RA, (nearP2X immRem4:$imm)))>; def : Pat<(mul GPRC:$RA, immRem5:$imm), (ADDQr (SLr GPRC:$RA, (nearP2X immRem5:$imm)), (S4ADDQr GPRC:$RA, GPRC:$RA))>; def : Pat<(mul GPRC:$RA, immRemP2:$imm), (ADDQr (SLr GPRC:$RA, (nearP2X immRemP2:$imm)), (SLi GPRC:$RA, (nearP2RemX immRemP2:$imm)))>; //n is below a power of 2 //FIXME: figure out why something is truncating the imm to 32bits // this will fix 2007-11-27-mulneg3 //def : Pat<(mul GPRC:$RA, immRem1n:$imm), // (SUBQr (SLr GPRC:$RA, (nearP2X immRem1n:$imm)), GPRC:$RA)>; //def : Pat<(mul GPRC:$RA, immRem2n:$imm), // (SUBQr (SLr GPRC:$RA, (nearP2X immRem2n:$imm)), (ADDQr GPRC:$RA, GPRC:$RA))>; //def : Pat<(mul GPRC:$RA, immRem3n:$imm), // (SUBQr (SLr GPRC:$RA, (nearP2X immRem3n:$imm)), (S4SUBQr GPRC:$RA, GPRC:$RA))>; //def : Pat<(mul GPRC:$RA, immRem4n:$imm), // (SUBQr (SLr GPRC:$RA, (nearP2X immRem4n:$imm)), (SLi GPRC:$RA, 2))>; //def : Pat<(mul GPRC:$RA, immRem5n:$imm), // (SUBQr (SLr GPRC:$RA, (nearP2X immRem5n:$imm)), (S4ADDQr GPRC:$RA, GPRC:$RA))>; //def : Pat<(mul GPRC:$RA, immRemP2n:$imm), // (SUBQr (SLr GPRC:$RA, (nearP2X immRemP2n:$imm)), (SLi GPRC:$RA, (nearP2RemX immRemP2n:$imm)))>; } //Added complexity