//===-- lib/MC/Disassembler.cpp - Disassembler Public C Interface ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Disassembler.h" #include "llvm-c/Disassembler.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/MemoryObject.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" namespace llvm { class Target; } // namespace llvm using namespace llvm; // LLVMCreateDisasm() creates a disassembler for the TripleName. Symbolic // disassembly is supported by passing a block of information in the DisInfo // parameter and specifying the TagType and callback functions as described in // the header llvm-c/Disassembler.h . The pointer to the block and the // functions can all be passed as NULL. If successful, this returns a // disassembler context. If not, it returns NULL. // LLVMDisasmContextRef LLVMCreateDisasm(const char *TripleName, void *DisInfo, int TagType, LLVMOpInfoCallback GetOpInfo, LLVMSymbolLookupCallback SymbolLookUp) { // Initialize targets and assembly printers/parsers. llvm::InitializeAllTargetInfos(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllAsmParsers(); llvm::InitializeAllDisassemblers(); // Get the target. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error); assert(TheTarget && "Unable to create target!"); // Get the assembler info needed to setup the MCContext. const MCAsmInfo *MAI = TheTarget->createMCAsmInfo(TripleName); assert(MAI && "Unable to create target asm info!"); const MCRegisterInfo *MRI = TheTarget->createMCRegInfo(TripleName); assert(MRI && "Unable to create target register info!"); // Package up features to be passed to target/subtarget std::string FeaturesStr; std::string CPU; const MCSubtargetInfo *STI = TheTarget->createMCSubtargetInfo(TripleName, CPU, FeaturesStr); assert(STI && "Unable to create subtarget info!"); // Set up the MCContext for creating symbols and MCExpr's. MCContext *Ctx = new MCContext(*MAI, *MRI, 0); assert(Ctx && "Unable to create MCContext!"); // Set up disassembler. MCDisassembler *DisAsm = TheTarget->createMCDisassembler(*STI); assert(DisAsm && "Unable to create disassembler!"); DisAsm->setupForSymbolicDisassembly(GetOpInfo, SymbolLookUp, DisInfo, Ctx); // Set up the instruction printer. int AsmPrinterVariant = MAI->getAssemblerDialect(); MCInstPrinter *IP = TheTarget->createMCInstPrinter(AsmPrinterVariant, *MAI, *STI); assert(IP && "Unable to create instruction printer!"); LLVMDisasmContext *DC = new LLVMDisasmContext(TripleName, DisInfo, TagType, GetOpInfo, SymbolLookUp, TheTarget, MAI, MRI, Ctx, DisAsm, IP); assert(DC && "Allocation failure!"); return DC; } // // LLVMDisasmDispose() disposes of the disassembler specified by the context. // void LLVMDisasmDispose(LLVMDisasmContextRef DCR){ LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; delete DC; } namespace { // // The memory object created by LLVMDisasmInstruction(). // class DisasmMemoryObject : public MemoryObject { uint8_t *Bytes; uint64_t Size; uint64_t BasePC; public: DisasmMemoryObject(uint8_t *bytes, uint64_t size, uint64_t basePC) : Bytes(bytes), Size(size), BasePC(basePC) {} uint64_t getBase() const { return BasePC; } uint64_t getExtent() const { return Size; } int readByte(uint64_t Addr, uint8_t *Byte) const { if (Addr - BasePC >= Size) return -1; *Byte = Bytes[Addr - BasePC]; return 0; } }; } // end anonymous namespace // // LLVMDisasmInstruction() disassembles a single instruction using the // disassembler context specified in the parameter DC. The bytes of the // instruction are specified in the parameter Bytes, and contains at least // BytesSize number of bytes. The instruction is at the address specified by // the PC parameter. If a valid instruction can be disassembled its string is // returned indirectly in OutString which whos size is specified in the // parameter OutStringSize. This function returns the number of bytes in the // instruction or zero if there was no valid instruction. If this function // returns zero the caller will have to pick how many bytes they want to step // over by printing a .byte, .long etc. to continue. // size_t LLVMDisasmInstruction(LLVMDisasmContextRef DCR, uint8_t *Bytes, uint64_t BytesSize, uint64_t PC, char *OutString, size_t OutStringSize){ LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; // Wrap the pointer to the Bytes, BytesSize and PC in a MemoryObject. DisasmMemoryObject MemoryObject(Bytes, BytesSize, PC); uint64_t Size; MCInst Inst; const MCDisassembler *DisAsm = DC->getDisAsm(); MCInstPrinter *IP = DC->getIP(); MCDisassembler::DecodeStatus S; S = DisAsm->getInstruction(Inst, Size, MemoryObject, PC, /*REMOVE*/ nulls(), DC->CommentStream); switch (S) { case MCDisassembler::Fail: case MCDisassembler::SoftFail: // FIXME: Do something different for soft failure modes? return 0; case MCDisassembler::Success: { DC->CommentStream.flush(); StringRef Comments = DC->CommentsToEmit.str(); SmallVector<char, 64> InsnStr; raw_svector_ostream OS(InsnStr); IP->printInst(&Inst, OS, Comments); OS.flush(); // Tell the comment stream that the vector changed underneath it. DC->CommentsToEmit.clear(); DC->CommentStream.resync(); assert(OutStringSize != 0 && "Output buffer cannot be zero size"); size_t OutputSize = std::min(OutStringSize-1, InsnStr.size()); std::memcpy(OutString, InsnStr.data(), OutputSize); OutString[OutputSize] = '\0'; // Terminate string. return Size; } } return 0; }