//===---- LiveRangeEdit.h - Basic tools for split and spill -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LiveRangeEdit class represents changes done to a virtual register when it // is spilled or split. // // The parent register is never changed. Instead, a number of new virtual // registers are created and added to the newRegs vector. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVERANGEEDIT_H #define LLVM_CODEGEN_LIVERANGEEDIT_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/CodeGen/LiveInterval.h" namespace llvm { class AliasAnalysis; class LiveIntervals; class MachineLoopInfo; class MachineRegisterInfo; class VirtRegMap; class LiveRangeEdit { public: /// Callback methods for LiveRangeEdit owners. struct Delegate { /// Called immediately before erasing a dead machine instruction. virtual void LRE_WillEraseInstruction(MachineInstr *MI) {} /// Called when a virtual register is no longer used. Return false to defer /// its deletion from LiveIntervals. virtual bool LRE_CanEraseVirtReg(unsigned) { return true; } /// Called before shrinking the live range of a virtual register. virtual void LRE_WillShrinkVirtReg(unsigned) {} /// Called after cloning a virtual register. /// This is used for new registers representing connected components of Old. virtual void LRE_DidCloneVirtReg(unsigned New, unsigned Old) {} virtual ~Delegate() {} }; private: LiveInterval &parent_; SmallVectorImpl<LiveInterval*> &newRegs_; Delegate *const delegate_; const SmallVectorImpl<LiveInterval*> *uselessRegs_; /// firstNew_ - Index of the first register added to newRegs_. const unsigned firstNew_; /// scannedRemattable_ - true when remattable values have been identified. bool scannedRemattable_; /// remattable_ - Values defined by remattable instructions as identified by /// tii.isTriviallyReMaterializable(). SmallPtrSet<const VNInfo*,4> remattable_; /// rematted_ - Values that were actually rematted, and so need to have their /// live range trimmed or entirely removed. SmallPtrSet<const VNInfo*,4> rematted_; /// scanRemattable - Identify the parent_ values that may rematerialize. void scanRemattable(LiveIntervals &lis, const TargetInstrInfo &tii, AliasAnalysis *aa); /// allUsesAvailableAt - Return true if all registers used by OrigMI at /// OrigIdx are also available with the same value at UseIdx. bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx, LiveIntervals &lis); /// foldAsLoad - If LI has a single use and a single def that can be folded as /// a load, eliminate the register by folding the def into the use. bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr*> &Dead, MachineRegisterInfo&, LiveIntervals&, const TargetInstrInfo&); public: /// Create a LiveRangeEdit for breaking down parent into smaller pieces. /// @param parent The register being spilled or split. /// @param newRegs List to receive any new registers created. This needn't be /// empty initially, any existing registers are ignored. /// @param uselessRegs List of registers that can't be used when /// rematerializing values because they are about to be removed. LiveRangeEdit(LiveInterval &parent, SmallVectorImpl<LiveInterval*> &newRegs, Delegate *delegate = 0, const SmallVectorImpl<LiveInterval*> *uselessRegs = 0) : parent_(parent), newRegs_(newRegs), delegate_(delegate), uselessRegs_(uselessRegs), firstNew_(newRegs.size()), scannedRemattable_(false) {} LiveInterval &getParent() const { return parent_; } unsigned getReg() const { return parent_.reg; } /// Iterator for accessing the new registers added by this edit. typedef SmallVectorImpl<LiveInterval*>::const_iterator iterator; iterator begin() const { return newRegs_.begin()+firstNew_; } iterator end() const { return newRegs_.end(); } unsigned size() const { return newRegs_.size()-firstNew_; } bool empty() const { return size() == 0; } LiveInterval *get(unsigned idx) const { return newRegs_[idx+firstNew_]; } ArrayRef<LiveInterval*> regs() const { return makeArrayRef(newRegs_).slice(firstNew_); } /// FIXME: Temporary accessors until we can get rid of /// LiveIntervals::AddIntervalsForSpills SmallVectorImpl<LiveInterval*> *getNewVRegs() { return &newRegs_; } const SmallVectorImpl<LiveInterval*> *getUselessVRegs() { return uselessRegs_; } /// createFrom - Create a new virtual register based on OldReg. LiveInterval &createFrom(unsigned OldReg, LiveIntervals&, VirtRegMap&); /// create - Create a new register with the same class and original slot as /// parent. LiveInterval &create(LiveIntervals &LIS, VirtRegMap &VRM) { return createFrom(getReg(), LIS, VRM); } /// anyRematerializable - Return true if any parent values may be /// rematerializable. /// This function must be called before any rematerialization is attempted. bool anyRematerializable(LiveIntervals&, const TargetInstrInfo&, AliasAnalysis*); /// checkRematerializable - Manually add VNI to the list of rematerializable /// values if DefMI may be rematerializable. bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI, const TargetInstrInfo&, AliasAnalysis*); /// Remat - Information needed to rematerialize at a specific location. struct Remat { VNInfo *ParentVNI; // parent_'s value at the remat location. MachineInstr *OrigMI; // Instruction defining ParentVNI. explicit Remat(VNInfo *ParentVNI) : ParentVNI(ParentVNI), OrigMI(0) {} }; /// canRematerializeAt - Determine if ParentVNI can be rematerialized at /// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI. /// When cheapAsAMove is set, only cheap remats are allowed. bool canRematerializeAt(Remat &RM, SlotIndex UseIdx, bool cheapAsAMove, LiveIntervals &lis); /// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an /// instruction into MBB before MI. The new instruction is mapped, but /// liveness is not updated. /// Return the SlotIndex of the new instruction. SlotIndex rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, const Remat &RM, LiveIntervals&, const TargetInstrInfo&, const TargetRegisterInfo&, bool Late = false); /// markRematerialized - explicitly mark a value as rematerialized after doing /// it manually. void markRematerialized(const VNInfo *ParentVNI) { rematted_.insert(ParentVNI); } /// didRematerialize - Return true if ParentVNI was rematerialized anywhere. bool didRematerialize(const VNInfo *ParentVNI) const { return rematted_.count(ParentVNI); } /// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try /// to erase it from LIS. void eraseVirtReg(unsigned Reg, LiveIntervals &LIS); /// eliminateDeadDefs - Try to delete machine instructions that are now dead /// (allDefsAreDead returns true). This may cause live intervals to be trimmed /// and further dead efs to be eliminated. void eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead, LiveIntervals&, VirtRegMap&, const TargetInstrInfo&); /// calculateRegClassAndHint - Recompute register class and hint for each new /// register. void calculateRegClassAndHint(MachineFunction&, LiveIntervals&, const MachineLoopInfo&); }; } #endif