//===-- llvm/Use.h - Definition of the Use class ----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This defines the Use class. The Use class represents the operand of an // instruction or some other User instance which refers to a Value. The Use // class keeps the "use list" of the referenced value up to date. // // Pointer tagging is used to efficiently find the User corresponding // to a Use without having to store a User pointer in every Use. A // User is preceded in memory by all the Uses corresponding to its // operands, and the low bits of one of the fields (Prev) of the Use // class are used to encode offsets to be able to find that User given // a pointer to any Use. For details, see: // // http://www.llvm.org/docs/ProgrammersManual.html#UserLayout // //===----------------------------------------------------------------------===// #ifndef LLVM_USE_H #define LLVM_USE_H #include "llvm/ADT/PointerIntPair.h" #include <cstddef> #include <iterator> namespace llvm { class Value; class User; class Use; template<typename> struct simplify_type; // Use** is only 4-byte aligned. template<> class PointerLikeTypeTraits<Use**> { public: static inline void *getAsVoidPointer(Use** P) { return P; } static inline Use **getFromVoidPointer(void *P) { return static_cast<Use**>(P); } enum { NumLowBitsAvailable = 2 }; }; //===----------------------------------------------------------------------===// // Use Class //===----------------------------------------------------------------------===// /// Use is here to make keeping the "use" list of a Value up-to-date really /// easy. class Use { public: /// swap - provide a fast substitute to std::swap<Use> /// that also works with less standard-compliant compilers void swap(Use &RHS); // A type for the word following an array of hung-off Uses in memory, which is // a pointer back to their User with the bottom bit set. typedef PointerIntPair<User*, 1, unsigned> UserRef; private: /// Copy ctor - do not implement Use(const Use &U); /// Destructor - Only for zap() ~Use() { if (Val) removeFromList(); } enum PrevPtrTag { zeroDigitTag , oneDigitTag , stopTag , fullStopTag }; /// Constructor Use(PrevPtrTag tag) : Val(0) { Prev.setInt(tag); } public: /// Normally Use will just implicitly convert to a Value* that it holds. operator Value*() const { return Val; } /// If implicit conversion to Value* doesn't work, the get() method returns /// the Value*. Value *get() const { return Val; } /// getUser - This returns the User that contains this Use. For an /// instruction operand, for example, this will return the instruction. User *getUser() const; inline void set(Value *Val); Value *operator=(Value *RHS) { set(RHS); return RHS; } const Use &operator=(const Use &RHS) { set(RHS.Val); return *this; } Value *operator->() { return Val; } const Value *operator->() const { return Val; } Use *getNext() const { return Next; } /// initTags - initialize the waymarking tags on an array of Uses, so that /// getUser() can find the User from any of those Uses. static Use *initTags(Use *Start, Use *Stop); /// zap - This is used to destroy Use operands when the number of operands of /// a User changes. static void zap(Use *Start, const Use *Stop, bool del = false); private: const Use* getImpliedUser() const; Value *Val; Use *Next; PointerIntPair<Use**, 2, PrevPtrTag> Prev; void setPrev(Use **NewPrev) { Prev.setPointer(NewPrev); } void addToList(Use **List) { Next = *List; if (Next) Next->setPrev(&Next); setPrev(List); *List = this; } void removeFromList() { Use **StrippedPrev = Prev.getPointer(); *StrippedPrev = Next; if (Next) Next->setPrev(StrippedPrev); } friend class Value; }; // simplify_type - Allow clients to treat uses just like values when using // casting operators. template<> struct simplify_type<Use> { typedef Value* SimpleType; static SimpleType getSimplifiedValue(const Use &Val) { return static_cast<SimpleType>(Val.get()); } }; template<> struct simplify_type<const Use> { typedef Value* SimpleType; static SimpleType getSimplifiedValue(const Use &Val) { return static_cast<SimpleType>(Val.get()); } }; template<typename UserTy> // UserTy == 'User' or 'const User' class value_use_iterator : public std::iterator<std::forward_iterator_tag, UserTy*, ptrdiff_t> { typedef std::iterator<std::forward_iterator_tag, UserTy*, ptrdiff_t> super; typedef value_use_iterator<UserTy> _Self; Use *U; explicit value_use_iterator(Use *u) : U(u) {} friend class Value; public: typedef typename super::reference reference; typedef typename super::pointer pointer; value_use_iterator(const _Self &I) : U(I.U) {} value_use_iterator() {} bool operator==(const _Self &x) const { return U == x.U; } bool operator!=(const _Self &x) const { return !operator==(x); } /// atEnd - return true if this iterator is equal to use_end() on the value. bool atEnd() const { return U == 0; } // Iterator traversal: forward iteration only _Self &operator++() { // Preincrement assert(U && "Cannot increment end iterator!"); U = U->getNext(); return *this; } _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } // Retrieve a pointer to the current User. UserTy *operator*() const { assert(U && "Cannot dereference end iterator!"); return U->getUser(); } UserTy *operator->() const { return operator*(); } Use &getUse() const { return *U; } /// getOperandNo - Return the operand # of this use in its User. Defined in /// User.h /// unsigned getOperandNo() const; }; } // End llvm namespace #endif