//===- MCExpr.h - Assembly Level Expressions --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCEXPR_H #define LLVM_MC_MCEXPR_H #include "llvm/ADT/DenseMap.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataTypes.h" namespace llvm { class MCAsmInfo; class MCAsmLayout; class MCAssembler; class MCContext; class MCSection; class MCSectionData; class MCSymbol; class MCValue; class raw_ostream; class StringRef; typedef DenseMap<const MCSectionData*, uint64_t> SectionAddrMap; /// MCExpr - Base class for the full range of assembler expressions which are /// needed for parsing. class MCExpr { public: enum ExprKind { Binary, ///< Binary expressions. Constant, ///< Constant expressions. SymbolRef, ///< References to labels and assigned expressions. Unary, ///< Unary expressions. Target ///< Target specific expression. }; private: ExprKind Kind; MCExpr(const MCExpr&); // DO NOT IMPLEMENT void operator=(const MCExpr&); // DO NOT IMPLEMENT bool EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs) const; protected: explicit MCExpr(ExprKind _Kind) : Kind(_Kind) {} bool EvaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs, bool InSet) const; public: /// @name Accessors /// @{ ExprKind getKind() const { return Kind; } /// @} /// @name Utility Methods /// @{ void print(raw_ostream &OS) const; void dump() const; /// @} /// @name Expression Evaluation /// @{ /// EvaluateAsAbsolute - Try to evaluate the expression to an absolute value. /// /// @param Res - The absolute value, if evaluation succeeds. /// @param Layout - The assembler layout object to use for evaluating symbol /// values. If not given, then only non-symbolic expressions will be /// evaluated. /// @result - True on success. bool EvaluateAsAbsolute(int64_t &Res) const; bool EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const; bool EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout &Layout) const; bool EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout &Layout, const SectionAddrMap &Addrs) const; /// EvaluateAsRelocatable - Try to evaluate the expression to a relocatable /// value, i.e. an expression of the fixed form (a - b + constant). /// /// @param Res - The relocatable value, if evaluation succeeds. /// @param Layout - The assembler layout object to use for evaluating values. /// @result - True on success. bool EvaluateAsRelocatable(MCValue &Res, const MCAsmLayout &Layout) const; /// FindAssociatedSection - Find the "associated section" for this expression, /// which is currently defined as the absolute section for constants, or /// otherwise the section associated with the first defined symbol in the /// expression. const MCSection *FindAssociatedSection() const; /// @} static bool classof(const MCExpr *) { return true; } }; inline raw_ostream &operator<<(raw_ostream &OS, const MCExpr &E) { E.print(OS); return OS; } //// MCConstantExpr - Represent a constant integer expression. class MCConstantExpr : public MCExpr { int64_t Value; explicit MCConstantExpr(int64_t _Value) : MCExpr(MCExpr::Constant), Value(_Value) {} public: /// @name Construction /// @{ static const MCConstantExpr *Create(int64_t Value, MCContext &Ctx); /// @} /// @name Accessors /// @{ int64_t getValue() const { return Value; } /// @} static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::Constant; } static bool classof(const MCConstantExpr *) { return true; } }; /// MCSymbolRefExpr - Represent a reference to a symbol from inside an /// expression. /// /// A symbol reference in an expression may be a use of a label, a use of an /// assembler variable (defined constant), or constitute an implicit definition /// of the symbol as external. class MCSymbolRefExpr : public MCExpr { public: enum VariantKind { VK_None, VK_Invalid, VK_GOT, VK_GOTOFF, VK_GOTPCREL, VK_GOTTPOFF, VK_INDNTPOFF, VK_NTPOFF, VK_GOTNTPOFF, VK_PLT, VK_TLSGD, VK_TLSLD, VK_TLSLDM, VK_TPOFF, VK_DTPOFF, VK_TLVP, // Mach-O thread local variable relocation // FIXME: We'd really like to use the generic Kinds listed above for these. VK_ARM_PLT, // ARM-style PLT references. i.e., (PLT) instead of @PLT VK_ARM_TLSGD, // ditto for TLSGD, GOT, GOTOFF, TPOFF and GOTTPOFF VK_ARM_GOT, VK_ARM_GOTOFF, VK_ARM_TPOFF, VK_ARM_GOTTPOFF, VK_PPC_TOC, VK_PPC_DARWIN_HA16, // ha16(symbol) VK_PPC_DARWIN_LO16, // lo16(symbol) VK_PPC_GAS_HA16, // symbol@ha VK_PPC_GAS_LO16 // symbol@l }; private: /// The symbol being referenced. const MCSymbol *Symbol; /// The symbol reference modifier. const VariantKind Kind; explicit MCSymbolRefExpr(const MCSymbol *_Symbol, VariantKind _Kind) : MCExpr(MCExpr::SymbolRef), Symbol(_Symbol), Kind(_Kind) {} public: /// @name Construction /// @{ static const MCSymbolRefExpr *Create(const MCSymbol *Symbol, MCContext &Ctx) { return MCSymbolRefExpr::Create(Symbol, VK_None, Ctx); } static const MCSymbolRefExpr *Create(const MCSymbol *Symbol, VariantKind Kind, MCContext &Ctx); static const MCSymbolRefExpr *Create(StringRef Name, VariantKind Kind, MCContext &Ctx); /// @} /// @name Accessors /// @{ const MCSymbol &getSymbol() const { return *Symbol; } VariantKind getKind() const { return Kind; } /// @} /// @name Static Utility Functions /// @{ static StringRef getVariantKindName(VariantKind Kind); static VariantKind getVariantKindForName(StringRef Name); /// @} static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::SymbolRef; } static bool classof(const MCSymbolRefExpr *) { return true; } }; /// MCUnaryExpr - Unary assembler expressions. class MCUnaryExpr : public MCExpr { public: enum Opcode { LNot, ///< Logical negation. Minus, ///< Unary minus. Not, ///< Bitwise negation. Plus ///< Unary plus. }; private: Opcode Op; const MCExpr *Expr; MCUnaryExpr(Opcode _Op, const MCExpr *_Expr) : MCExpr(MCExpr::Unary), Op(_Op), Expr(_Expr) {} public: /// @name Construction /// @{ static const MCUnaryExpr *Create(Opcode Op, const MCExpr *Expr, MCContext &Ctx); static const MCUnaryExpr *CreateLNot(const MCExpr *Expr, MCContext &Ctx) { return Create(LNot, Expr, Ctx); } static const MCUnaryExpr *CreateMinus(const MCExpr *Expr, MCContext &Ctx) { return Create(Minus, Expr, Ctx); } static const MCUnaryExpr *CreateNot(const MCExpr *Expr, MCContext &Ctx) { return Create(Not, Expr, Ctx); } static const MCUnaryExpr *CreatePlus(const MCExpr *Expr, MCContext &Ctx) { return Create(Plus, Expr, Ctx); } /// @} /// @name Accessors /// @{ /// getOpcode - Get the kind of this unary expression. Opcode getOpcode() const { return Op; } /// getSubExpr - Get the child of this unary expression. const MCExpr *getSubExpr() const { return Expr; } /// @} static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::Unary; } static bool classof(const MCUnaryExpr *) { return true; } }; /// MCBinaryExpr - Binary assembler expressions. class MCBinaryExpr : public MCExpr { public: enum Opcode { Add, ///< Addition. And, ///< Bitwise and. Div, ///< Signed division. EQ, ///< Equality comparison. GT, ///< Signed greater than comparison (result is either 0 or some ///< target-specific non-zero value) GTE, ///< Signed greater than or equal comparison (result is either 0 or ///< some target-specific non-zero value). LAnd, ///< Logical and. LOr, ///< Logical or. LT, ///< Signed less than comparison (result is either 0 or ///< some target-specific non-zero value). LTE, ///< Signed less than or equal comparison (result is either 0 or ///< some target-specific non-zero value). Mod, ///< Signed remainder. Mul, ///< Multiplication. NE, ///< Inequality comparison. Or, ///< Bitwise or. Shl, ///< Shift left. Shr, ///< Shift right (arithmetic or logical, depending on target) Sub, ///< Subtraction. Xor ///< Bitwise exclusive or. }; private: Opcode Op; const MCExpr *LHS, *RHS; MCBinaryExpr(Opcode _Op, const MCExpr *_LHS, const MCExpr *_RHS) : MCExpr(MCExpr::Binary), Op(_Op), LHS(_LHS), RHS(_RHS) {} public: /// @name Construction /// @{ static const MCBinaryExpr *Create(Opcode Op, const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx); static const MCBinaryExpr *CreateAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Add, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateAnd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(And, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateDiv(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Div, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateEQ(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(EQ, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateGT(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(GT, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateGTE(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(GTE, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLAnd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LAnd, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLOr(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LOr, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLT(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LT, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateLTE(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(LTE, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateMod(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Mod, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateMul(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Mul, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateNE(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(NE, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateOr(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Or, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateShl(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Shl, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateShr(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Shr, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Sub, LHS, RHS, Ctx); } static const MCBinaryExpr *CreateXor(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return Create(Xor, LHS, RHS, Ctx); } /// @} /// @name Accessors /// @{ /// getOpcode - Get the kind of this binary expression. Opcode getOpcode() const { return Op; } /// getLHS - Get the left-hand side expression of the binary operator. const MCExpr *getLHS() const { return LHS; } /// getRHS - Get the right-hand side expression of the binary operator. const MCExpr *getRHS() const { return RHS; } /// @} static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::Binary; } static bool classof(const MCBinaryExpr *) { return true; } }; /// MCTargetExpr - This is an extension point for target-specific MCExpr /// subclasses to implement. /// /// NOTE: All subclasses are required to have trivial destructors because /// MCExprs are bump pointer allocated and not destructed. class MCTargetExpr : public MCExpr { virtual void Anchor(); protected: MCTargetExpr() : MCExpr(Target) {} virtual ~MCTargetExpr() {} public: virtual void PrintImpl(raw_ostream &OS) const = 0; virtual bool EvaluateAsRelocatableImpl(MCValue &Res, const MCAsmLayout *Layout) const = 0; virtual void AddValueSymbols(MCAssembler *) const = 0; virtual const MCSection *FindAssociatedSection() const = 0; static bool classof(const MCExpr *E) { return E->getKind() == MCExpr::Target; } static bool classof(const MCTargetExpr *) { return true; } }; } // end namespace llvm #endif