/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkGpuCommandBuffer.h" #include "GrBackendDrawableInfo.h" #include "GrFixedClip.h" #include "GrMesh.h" #include "GrOpFlushState.h" #include "GrPipeline.h" #include "GrRenderTargetPriv.h" #include "GrTexturePriv.h" #include "GrVkCommandBuffer.h" #include "GrVkCommandPool.h" #include "GrVkGpu.h" #include "GrVkPipeline.h" #include "GrVkRenderPass.h" #include "GrVkRenderTarget.h" #include "GrVkResourceProvider.h" #include "GrVkSemaphore.h" #include "GrVkTexture.h" #include "SkDrawable.h" #include "SkRect.h" void GrVkGpuTextureCommandBuffer::copy(GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint) { fCopies.emplace_back(src, srcOrigin, srcRect, dstPoint); } void GrVkGpuTextureCommandBuffer::insertEventMarker(const char* msg) { // TODO: does Vulkan have a correlate? } void GrVkGpuTextureCommandBuffer::submit() { for (int i = 0; i < fCopies.count(); ++i) { CopyInfo& copyInfo = fCopies[i]; fGpu->copySurface(fTexture, fOrigin, copyInfo.fSrc, copyInfo.fSrcOrigin, copyInfo.fSrcRect, copyInfo.fDstPoint); } } GrVkGpuTextureCommandBuffer::~GrVkGpuTextureCommandBuffer() {} //////////////////////////////////////////////////////////////////////////////// void get_vk_load_store_ops(GrLoadOp loadOpIn, GrStoreOp storeOpIn, VkAttachmentLoadOp* loadOp, VkAttachmentStoreOp* storeOp) { switch (loadOpIn) { case GrLoadOp::kLoad: *loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; break; case GrLoadOp::kClear: *loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; break; case GrLoadOp::kDiscard: *loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; break; default: SK_ABORT("Invalid LoadOp"); *loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; } switch (storeOpIn) { case GrStoreOp::kStore: *storeOp = VK_ATTACHMENT_STORE_OP_STORE; break; case GrStoreOp::kDiscard: *storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; break; default: SK_ABORT("Invalid StoreOp"); *storeOp = VK_ATTACHMENT_STORE_OP_STORE; } } GrVkGpuRTCommandBuffer::GrVkGpuRTCommandBuffer(GrVkGpu* gpu) : fCurrentCmdInfo(-1) , fGpu(gpu) , fLastPipelineState(nullptr) { } void GrVkGpuRTCommandBuffer::init() { GrVkRenderPass::LoadStoreOps vkColorOps(fVkColorLoadOp, fVkColorStoreOp); GrVkRenderPass::LoadStoreOps vkStencilOps(fVkStencilLoadOp, fVkStencilStoreOp); CommandBufferInfo& cbInfo = fCommandBufferInfos.push_back(); SkASSERT(fCommandBufferInfos.count() == 1); fCurrentCmdInfo = 0; GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle(); if (rpHandle.isValid()) { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, vkColorOps, vkStencilOps); } else { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, vkColorOps, vkStencilOps); } cbInfo.fColorClearValue.color.float32[0] = fClearColor[0]; cbInfo.fColorClearValue.color.float32[1] = fClearColor[1]; cbInfo.fColorClearValue.color.float32[2] = fClearColor[2]; cbInfo.fColorClearValue.color.float32[3] = fClearColor[3]; if (VK_ATTACHMENT_LOAD_OP_CLEAR == fVkColorLoadOp) { cbInfo.fBounds = SkRect::MakeWH(vkRT->width(), vkRT->height()); } else { cbInfo.fBounds.setEmpty(); } if (VK_ATTACHMENT_LOAD_OP_CLEAR == fVkColorLoadOp) { cbInfo.fLoadStoreState = LoadStoreState::kStartsWithClear; } else if (VK_ATTACHMENT_LOAD_OP_LOAD == fVkColorLoadOp && VK_ATTACHMENT_STORE_OP_STORE == fVkColorStoreOp) { cbInfo.fLoadStoreState = LoadStoreState::kLoadAndStore; } else if (VK_ATTACHMENT_LOAD_OP_DONT_CARE == fVkColorLoadOp) { cbInfo.fLoadStoreState = LoadStoreState::kStartsWithDiscard; } cbInfo.fCommandBuffers.push_back(fGpu->cmdPool()->findOrCreateSecondaryCommandBuffer(fGpu)); cbInfo.currentCmdBuf()->begin(fGpu, vkRT->framebuffer(), cbInfo.fRenderPass); } void GrVkGpuRTCommandBuffer::initWrapped() { CommandBufferInfo& cbInfo = fCommandBufferInfos.push_back(); SkASSERT(fCommandBufferInfos.count() == 1); fCurrentCmdInfo = 0; GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); SkASSERT(vkRT->wrapsSecondaryCommandBuffer()); cbInfo.fRenderPass = vkRT->externalRenderPass(); cbInfo.fRenderPass->ref(); cbInfo.fBounds.setEmpty(); cbInfo.fCommandBuffers.push_back(vkRT->getExternalSecondaryCommandBuffer()); cbInfo.fCommandBuffers[0]->ref(); cbInfo.currentCmdBuf()->begin(fGpu, nullptr, cbInfo.fRenderPass); } GrVkGpuRTCommandBuffer::~GrVkGpuRTCommandBuffer() { this->reset(); } GrGpu* GrVkGpuRTCommandBuffer::gpu() { return fGpu; } void GrVkGpuRTCommandBuffer::end() { if (fCurrentCmdInfo >= 0) { fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf()->end(fGpu); } } void GrVkGpuRTCommandBuffer::submit() { if (!fRenderTarget) { return; } GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); GrVkImage* targetImage = vkRT->msaaImage() ? vkRT->msaaImage() : vkRT; GrStencilAttachment* stencil = fRenderTarget->renderTargetPriv().getStencilAttachment(); for (int i = 0; i < fCommandBufferInfos.count(); ++i) { CommandBufferInfo& cbInfo = fCommandBufferInfos[i]; for (int j = 0; j < cbInfo.fPreDrawUploads.count(); ++j) { InlineUploadInfo& iuInfo = cbInfo.fPreDrawUploads[j]; iuInfo.fFlushState->doUpload(iuInfo.fUpload); } for (int j = 0; j < cbInfo.fPreCopies.count(); ++j) { CopyInfo& copyInfo = cbInfo.fPreCopies[j]; fGpu->copySurface(fRenderTarget, fOrigin, copyInfo.fSrc, copyInfo.fSrcOrigin, copyInfo.fSrcRect, copyInfo.fDstPoint, copyInfo.fShouldDiscardDst); } // TODO: Many things create a scratch texture which adds the discard immediately, but then // don't draw to it right away. This causes the discard to be ignored and we get yelled at // for loading uninitialized data. However, once MDB lands with reordering, the discard will // get reordered with the rest of the draw commands and we can remove the discard check. if (cbInfo.fIsEmpty && cbInfo.fLoadStoreState != LoadStoreState::kStartsWithClear && cbInfo.fLoadStoreState != LoadStoreState::kStartsWithDiscard) { // We have sumbitted no actual draw commands to the command buffer and we are not using // the render pass to do a clear so there is no need to submit anything. continue; } // We don't want to actually submit the secondary command buffer if it is wrapped. if (this->wrapsSecondaryCommandBuffer()) { // If we have any sampled images set their layout now. for (int j = 0; j < cbInfo.fSampledImages.count(); ++j) { cbInfo.fSampledImages[j]->setImageLayout(fGpu, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, false); } // There should have only been one secondary command buffer in the wrapped case so it is // safe to just return here. SkASSERT(fCommandBufferInfos.count() == 1); return; } // Make sure if we only have a discard load that we execute the discard on the whole image. // TODO: Once we improve our tracking of discards so that we never end up flushing a discard // call with no actually ops, remove this. if (cbInfo.fIsEmpty && cbInfo.fLoadStoreState == LoadStoreState::kStartsWithDiscard) { cbInfo.fBounds = SkRect::MakeWH(vkRT->width(), vkRT->height()); } if (cbInfo.fBounds.intersect(0, 0, SkIntToScalar(fRenderTarget->width()), SkIntToScalar(fRenderTarget->height()))) { // Make sure we do the following layout changes after all copies, uploads, or any other // pre-work is done since we may change the layouts in the pre-work. Also since the // draws will be submitted in different render passes, we need to guard againts write // and write issues. // Change layout of our render target so it can be used as the color attachment. // TODO: If we know that we will never be blending or loading the attachment we could // drop the VK_ACCESS_COLOR_ATTACHMENT_READ_BIT. targetImage->setImageLayout(fGpu, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, false); // If we are using a stencil attachment we also need to update its layout if (stencil) { GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil; // We need the write and read access bits since we may load and store the stencil. // The initial load happens in the VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT so we // wait there. vkStencil->setImageLayout(fGpu, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, false); } // If we have any sampled images set their layout now. for (int j = 0; j < cbInfo.fSampledImages.count(); ++j) { cbInfo.fSampledImages[j]->setImageLayout(fGpu, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, false); } SkIRect iBounds; cbInfo.fBounds.roundOut(&iBounds); fGpu->submitSecondaryCommandBuffer(cbInfo.fCommandBuffers, cbInfo.fRenderPass, &cbInfo.fColorClearValue, vkRT, fOrigin, iBounds); } } } void GrVkGpuRTCommandBuffer::set(GrRenderTarget* rt, GrSurfaceOrigin origin, const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo, const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) { SkASSERT(!fRenderTarget); SkASSERT(fCommandBufferInfos.empty()); SkASSERT(-1 == fCurrentCmdInfo); SkASSERT(fGpu == rt->getContext()->contextPriv().getGpu()); SkASSERT(!fLastPipelineState); this->INHERITED::set(rt, origin); if (this->wrapsSecondaryCommandBuffer()) { this->initWrapped(); return; } fClearColor = colorInfo.fClearColor; get_vk_load_store_ops(colorInfo.fLoadOp, colorInfo.fStoreOp, &fVkColorLoadOp, &fVkColorStoreOp); get_vk_load_store_ops(stencilInfo.fLoadOp, stencilInfo.fStoreOp, &fVkStencilLoadOp, &fVkStencilStoreOp); this->init(); } void GrVkGpuRTCommandBuffer::reset() { for (int i = 0; i < fCommandBufferInfos.count(); ++i) { CommandBufferInfo& cbInfo = fCommandBufferInfos[i]; for (int j = 0; j < cbInfo.fCommandBuffers.count(); ++j) { cbInfo.fCommandBuffers[j]->unref(fGpu); } cbInfo.fRenderPass->unref(fGpu); } fCommandBufferInfos.reset(); fCurrentCmdInfo = -1; fLastPipelineState = nullptr; fRenderTarget = nullptr; } bool GrVkGpuRTCommandBuffer::wrapsSecondaryCommandBuffer() const { GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); return vkRT->wrapsSecondaryCommandBuffer(); } //////////////////////////////////////////////////////////////////////////////// void GrVkGpuRTCommandBuffer::discard() { GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; if (cbInfo.fIsEmpty) { // Change the render pass to do a don't-care load for both color & stencil GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE); GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE); const GrVkRenderPass* oldRP = cbInfo.fRenderPass; const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle(); if (rpHandle.isValid()) { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, vkColorOps, vkStencilOps); } else { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, vkColorOps, vkStencilOps); } SkASSERT(cbInfo.fRenderPass->isCompatible(*oldRP)); oldRP->unref(fGpu); cbInfo.fBounds.join(fRenderTarget->getBoundsRect()); cbInfo.fLoadStoreState = LoadStoreState::kStartsWithDiscard; // If we are going to discard the whole render target then the results of any copies we did // immediately before to the target won't matter, so just drop them. cbInfo.fPreCopies.reset(); } } void GrVkGpuRTCommandBuffer::insertEventMarker(const char* msg) { // TODO: does Vulkan have a correlate? } void GrVkGpuRTCommandBuffer::onClearStencilClip(const GrFixedClip& clip, bool insideStencilMask) { SkASSERT(!clip.hasWindowRectangles()); CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; GrStencilAttachment* sb = fRenderTarget->renderTargetPriv().getStencilAttachment(); // this should only be called internally when we know we have a // stencil buffer. SkASSERT(sb); int stencilBitCount = sb->bits(); // The contract with the callers does not guarantee that we preserve all bits in the stencil // during this clear. Thus we will clear the entire stencil to the desired value. VkClearDepthStencilValue vkStencilColor; memset(&vkStencilColor, 0, sizeof(VkClearDepthStencilValue)); if (insideStencilMask) { vkStencilColor.stencil = (1 << (stencilBitCount - 1)); } else { vkStencilColor.stencil = 0; } VkClearRect clearRect; // Flip rect if necessary SkIRect vkRect; if (!clip.scissorEnabled()) { vkRect.setXYWH(0, 0, fRenderTarget->width(), fRenderTarget->height()); } else if (kBottomLeft_GrSurfaceOrigin != fOrigin) { vkRect = clip.scissorRect(); } else { const SkIRect& scissor = clip.scissorRect(); vkRect.setLTRB(scissor.fLeft, fRenderTarget->height() - scissor.fBottom, scissor.fRight, fRenderTarget->height() - scissor.fTop); } clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop }; clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() }; clearRect.baseArrayLayer = 0; clearRect.layerCount = 1; uint32_t stencilIndex; SkAssertResult(cbInfo.fRenderPass->stencilAttachmentIndex(&stencilIndex)); VkClearAttachment attachment; attachment.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; attachment.colorAttachment = 0; // this value shouldn't matter attachment.clearValue.depthStencil = vkStencilColor; cbInfo.currentCmdBuf()->clearAttachments(fGpu, 1, &attachment, 1, &clearRect); cbInfo.fIsEmpty = false; // Update command buffer bounds if (!clip.scissorEnabled()) { cbInfo.fBounds.join(fRenderTarget->getBoundsRect()); } else { cbInfo.fBounds.join(SkRect::Make(clip.scissorRect())); } } void GrVkGpuRTCommandBuffer::onClear(const GrFixedClip& clip, const SkPMColor4f& color) { GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); // parent class should never let us get here with no RT SkASSERT(!clip.hasWindowRectangles()); CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; VkClearColorValue vkColor = {{color.fR, color.fG, color.fB, color.fA}}; if (cbInfo.fIsEmpty && !clip.scissorEnabled()) { // Change the render pass to do a clear load GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_STORE); // Preserve the stencil buffer's load & store settings GrVkRenderPass::LoadStoreOps vkStencilOps(fVkStencilLoadOp, fVkStencilStoreOp); const GrVkRenderPass* oldRP = cbInfo.fRenderPass; const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle(); if (rpHandle.isValid()) { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, vkColorOps, vkStencilOps); } else { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, vkColorOps, vkStencilOps); } SkASSERT(cbInfo.fRenderPass->isCompatible(*oldRP)); oldRP->unref(fGpu); cbInfo.fColorClearValue.color = {{color.fR, color.fG, color.fB, color.fA}}; cbInfo.fLoadStoreState = LoadStoreState::kStartsWithClear; // If we are going to clear the whole render target then the results of any copies we did // immediately before to the target won't matter, so just drop them. cbInfo.fPreCopies.reset(); // Update command buffer bounds cbInfo.fBounds.join(fRenderTarget->getBoundsRect()); return; } // We always do a sub rect clear with clearAttachments since we are inside a render pass VkClearRect clearRect; // Flip rect if necessary SkIRect vkRect; if (!clip.scissorEnabled()) { vkRect.setXYWH(0, 0, fRenderTarget->width(), fRenderTarget->height()); } else if (kBottomLeft_GrSurfaceOrigin != fOrigin) { vkRect = clip.scissorRect(); } else { const SkIRect& scissor = clip.scissorRect(); vkRect.setLTRB(scissor.fLeft, fRenderTarget->height() - scissor.fBottom, scissor.fRight, fRenderTarget->height() - scissor.fTop); } clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop }; clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() }; clearRect.baseArrayLayer = 0; clearRect.layerCount = 1; uint32_t colorIndex; SkAssertResult(cbInfo.fRenderPass->colorAttachmentIndex(&colorIndex)); VkClearAttachment attachment; attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; attachment.colorAttachment = colorIndex; attachment.clearValue.color = vkColor; cbInfo.currentCmdBuf()->clearAttachments(fGpu, 1, &attachment, 1, &clearRect); cbInfo.fIsEmpty = false; // Update command buffer bounds if (!clip.scissorEnabled()) { cbInfo.fBounds.join(fRenderTarget->getBoundsRect()); } else { cbInfo.fBounds.join(SkRect::Make(clip.scissorRect())); } return; } //////////////////////////////////////////////////////////////////////////////// void GrVkGpuRTCommandBuffer::addAdditionalCommandBuffer() { GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; cbInfo.currentCmdBuf()->end(fGpu); cbInfo.fCommandBuffers.push_back(fGpu->cmdPool()->findOrCreateSecondaryCommandBuffer(fGpu)); cbInfo.currentCmdBuf()->begin(fGpu, vkRT->framebuffer(), cbInfo.fRenderPass); } void GrVkGpuRTCommandBuffer::addAdditionalRenderPass() { GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf()->end(fGpu); CommandBufferInfo& cbInfo = fCommandBufferInfos.push_back(); fCurrentCmdInfo++; GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle(); if (rpHandle.isValid()) { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, vkColorOps, vkStencilOps); } else { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, vkColorOps, vkStencilOps); } cbInfo.fLoadStoreState = LoadStoreState::kLoadAndStore; cbInfo.fCommandBuffers.push_back(fGpu->cmdPool()->findOrCreateSecondaryCommandBuffer(fGpu)); // It shouldn't matter what we set the clear color to here since we will assume loading of the // attachment. memset(&cbInfo.fColorClearValue, 0, sizeof(VkClearValue)); cbInfo.fBounds.setEmpty(); cbInfo.currentCmdBuf()->begin(fGpu, vkRT->framebuffer(), cbInfo.fRenderPass); } void GrVkGpuRTCommandBuffer::inlineUpload(GrOpFlushState* state, GrDeferredTextureUploadFn& upload) { if (!fCommandBufferInfos[fCurrentCmdInfo].fIsEmpty) { this->addAdditionalRenderPass(); } fCommandBufferInfos[fCurrentCmdInfo].fPreDrawUploads.emplace_back(state, upload); } void GrVkGpuRTCommandBuffer::copy(GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint) { CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; if (!cbInfo.fIsEmpty || LoadStoreState::kStartsWithClear == cbInfo.fLoadStoreState) { this->addAdditionalRenderPass(); } fCommandBufferInfos[fCurrentCmdInfo].fPreCopies.emplace_back( src, srcOrigin, srcRect, dstPoint, LoadStoreState::kStartsWithDiscard == cbInfo.fLoadStoreState); if (LoadStoreState::kLoadAndStore != cbInfo.fLoadStoreState) { // Change the render pass to do a load and store so we don't lose the results of our copy GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); const GrVkRenderPass* oldRP = cbInfo.fRenderPass; GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget); const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle(); if (rpHandle.isValid()) { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, vkColorOps, vkStencilOps); } else { cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, vkColorOps, vkStencilOps); } SkASSERT(cbInfo.fRenderPass->isCompatible(*oldRP)); oldRP->unref(fGpu); cbInfo.fLoadStoreState = LoadStoreState::kLoadAndStore; } } //////////////////////////////////////////////////////////////////////////////// void GrVkGpuRTCommandBuffer::bindGeometry(const GrBuffer* indexBuffer, const GrBuffer* vertexBuffer, const GrBuffer* instanceBuffer) { GrVkSecondaryCommandBuffer* currCmdBuf = fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf(); // There is no need to put any memory barriers to make sure host writes have finished here. // When a command buffer is submitted to a queue, there is an implicit memory barrier that // occurs for all host writes. Additionally, BufferMemoryBarriers are not allowed inside of // an active RenderPass. // Here our vertex and instance inputs need to match the same 0-based bindings they were // assigned in GrVkPipeline. That is, vertex first (if any) followed by instance. uint32_t binding = 0; if (vertexBuffer) { SkASSERT(vertexBuffer); SkASSERT(!vertexBuffer->isCPUBacked()); SkASSERT(!vertexBuffer->isMapped()); currCmdBuf->bindInputBuffer(fGpu, binding++, static_cast<const GrVkVertexBuffer*>(vertexBuffer)); } if (instanceBuffer) { SkASSERT(instanceBuffer); SkASSERT(!instanceBuffer->isCPUBacked()); SkASSERT(!instanceBuffer->isMapped()); currCmdBuf->bindInputBuffer(fGpu, binding++, static_cast<const GrVkVertexBuffer*>(instanceBuffer)); } if (indexBuffer) { SkASSERT(indexBuffer); SkASSERT(!indexBuffer->isMapped()); SkASSERT(!indexBuffer->isCPUBacked()); currCmdBuf->bindIndexBuffer(fGpu, static_cast<const GrVkIndexBuffer*>(indexBuffer)); } } GrVkPipelineState* GrVkGpuRTCommandBuffer::prepareDrawState( const GrPrimitiveProcessor& primProc, const GrPipeline& pipeline, const GrPipeline::FixedDynamicState* fixedDynamicState, const GrPipeline::DynamicStateArrays* dynamicStateArrays, GrPrimitiveType primitiveType) { CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; SkASSERT(cbInfo.fRenderPass); VkRenderPass compatibleRenderPass = cbInfo.fRenderPass->vkRenderPass(); const GrTextureProxy* const* primProcProxies = nullptr; if (dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures) { primProcProxies = dynamicStateArrays->fPrimitiveProcessorTextures; } else if (fixedDynamicState) { primProcProxies = fixedDynamicState->fPrimitiveProcessorTextures; } SkASSERT(SkToBool(primProcProxies) == SkToBool(primProc.numTextureSamplers())); GrVkPipelineState* pipelineState = fGpu->resourceProvider().findOrCreateCompatiblePipelineState(fRenderTarget, fOrigin, pipeline, primProc, primProcProxies, primitiveType, compatibleRenderPass); if (!pipelineState) { return pipelineState; } if (!cbInfo.fIsEmpty && fLastPipelineState && fLastPipelineState != pipelineState && fGpu->vkCaps().newCBOnPipelineChange()) { this->addAdditionalCommandBuffer(); } fLastPipelineState = pipelineState; pipelineState->bindPipeline(fGpu, cbInfo.currentCmdBuf()); pipelineState->setAndBindUniforms(fGpu, fRenderTarget, fOrigin, primProc, pipeline, cbInfo.currentCmdBuf()); // Check whether we need to bind textures between each GrMesh. If not we can bind them all now. bool setTextures = !(dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures); if (setTextures) { pipelineState->setAndBindTextures(fGpu, primProc, pipeline, primProcProxies, cbInfo.currentCmdBuf()); } if (!pipeline.isScissorEnabled()) { GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(), fRenderTarget, fOrigin, SkIRect::MakeWH(fRenderTarget->width(), fRenderTarget->height())); } else if (!dynamicStateArrays || !dynamicStateArrays->fScissorRects) { SkASSERT(fixedDynamicState); GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(), fRenderTarget, fOrigin, fixedDynamicState->fScissorRect); } GrVkPipeline::SetDynamicViewportState(fGpu, cbInfo.currentCmdBuf(), fRenderTarget); GrVkPipeline::SetDynamicBlendConstantState(fGpu, cbInfo.currentCmdBuf(), fRenderTarget->config(), pipeline.getXferProcessor()); return pipelineState; } void GrVkGpuRTCommandBuffer::onDraw(const GrPrimitiveProcessor& primProc, const GrPipeline& pipeline, const GrPipeline::FixedDynamicState* fixedDynamicState, const GrPipeline::DynamicStateArrays* dynamicStateArrays, const GrMesh meshes[], int meshCount, const SkRect& bounds) { if (!meshCount) { return; } CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; auto prepareSampledImage = [&](GrTexture* texture, GrSamplerState::Filter filter) { GrVkTexture* vkTexture = static_cast<GrVkTexture*>(texture); // We may need to resolve the texture first if it is also a render target GrVkRenderTarget* texRT = static_cast<GrVkRenderTarget*>(vkTexture->asRenderTarget()); if (texRT) { fGpu->resolveRenderTargetNoFlush(texRT); } // Check if we need to regenerate any mip maps if (GrSamplerState::Filter::kMipMap == filter && (vkTexture->width() != 1 || vkTexture->height() != 1)) { SkASSERT(vkTexture->texturePriv().mipMapped() == GrMipMapped::kYes); if (vkTexture->texturePriv().mipMapsAreDirty()) { fGpu->regenerateMipMapLevels(vkTexture); } } cbInfo.fSampledImages.push_back(vkTexture); }; if (dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures) { for (int m = 0, i = 0; m < meshCount; ++m) { for (int s = 0; s < primProc.numTextureSamplers(); ++s, ++i) { auto texture = dynamicStateArrays->fPrimitiveProcessorTextures[i]->peekTexture(); prepareSampledImage(texture, primProc.textureSampler(s).samplerState().filter()); } } } else { for (int i = 0; i < primProc.numTextureSamplers(); ++i) { auto texture = fixedDynamicState->fPrimitiveProcessorTextures[i]->peekTexture(); prepareSampledImage(texture, primProc.textureSampler(i).samplerState().filter()); } } GrFragmentProcessor::Iter iter(pipeline); while (const GrFragmentProcessor* fp = iter.next()) { for (int i = 0; i < fp->numTextureSamplers(); ++i) { const GrFragmentProcessor::TextureSampler& sampler = fp->textureSampler(i); prepareSampledImage(sampler.peekTexture(), sampler.samplerState().filter()); } } if (GrTexture* dstTexture = pipeline.peekDstTexture()) { cbInfo.fSampledImages.push_back(static_cast<GrVkTexture*>(dstTexture)); } GrPrimitiveType primitiveType = meshes[0].primitiveType(); GrVkPipelineState* pipelineState = this->prepareDrawState(primProc, pipeline, fixedDynamicState, dynamicStateArrays, primitiveType); if (!pipelineState) { return; } bool dynamicScissor = pipeline.isScissorEnabled() && dynamicStateArrays && dynamicStateArrays->fScissorRects; bool dynamicTextures = dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures; for (int i = 0; i < meshCount; ++i) { const GrMesh& mesh = meshes[i]; if (mesh.primitiveType() != primitiveType) { SkDEBUGCODE(pipelineState = nullptr); primitiveType = mesh.primitiveType(); pipelineState = this->prepareDrawState(primProc, pipeline, fixedDynamicState, dynamicStateArrays, primitiveType); if (!pipelineState) { return; } } if (dynamicScissor) { GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(), fRenderTarget, fOrigin, dynamicStateArrays->fScissorRects[i]); } if (dynamicTextures) { GrTextureProxy* const* meshProxies = dynamicStateArrays->fPrimitiveProcessorTextures + primProc.numTextureSamplers() * i; pipelineState->setAndBindTextures(fGpu, primProc, pipeline, meshProxies, cbInfo.currentCmdBuf()); } SkASSERT(pipelineState); mesh.sendToGpu(this); } cbInfo.fBounds.join(bounds); cbInfo.fIsEmpty = false; } void GrVkGpuRTCommandBuffer::sendInstancedMeshToGpu(GrPrimitiveType, const GrBuffer* vertexBuffer, int vertexCount, int baseVertex, const GrBuffer* instanceBuffer, int instanceCount, int baseInstance) { CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; this->bindGeometry(nullptr, vertexBuffer, instanceBuffer); cbInfo.currentCmdBuf()->draw(fGpu, vertexCount, instanceCount, baseVertex, baseInstance); fGpu->stats()->incNumDraws(); } void GrVkGpuRTCommandBuffer::sendIndexedInstancedMeshToGpu(GrPrimitiveType, const GrBuffer* indexBuffer, int indexCount, int baseIndex, const GrBuffer* vertexBuffer, int baseVertex, const GrBuffer* instanceBuffer, int instanceCount, int baseInstance, GrPrimitiveRestart restart) { SkASSERT(restart == GrPrimitiveRestart::kNo); CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; this->bindGeometry(indexBuffer, vertexBuffer, instanceBuffer); cbInfo.currentCmdBuf()->drawIndexed(fGpu, indexCount, instanceCount, baseIndex, baseVertex, baseInstance); fGpu->stats()->incNumDraws(); } //////////////////////////////////////////////////////////////////////////////// void GrVkGpuRTCommandBuffer::executeDrawable(std::unique_ptr<SkDrawable::GpuDrawHandler> drawable) { GrVkRenderTarget* target = static_cast<GrVkRenderTarget*>(fRenderTarget); GrVkImage* targetImage = target->msaaImage() ? target->msaaImage() : target; CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo]; VkRect2D bounds; bounds.offset = { 0, 0 }; bounds.extent = { 0, 0 }; GrVkDrawableInfo vkInfo; vkInfo.fSecondaryCommandBuffer = cbInfo.currentCmdBuf()->vkCommandBuffer(); vkInfo.fCompatibleRenderPass = cbInfo.fRenderPass->vkRenderPass(); SkAssertResult(cbInfo.fRenderPass->colorAttachmentIndex(&vkInfo.fColorAttachmentIndex)); vkInfo.fFormat = targetImage->imageFormat(); vkInfo.fDrawBounds = &bounds; GrBackendDrawableInfo info(vkInfo); // After we draw into the command buffer via the drawable, cached state we have may be invalid. cbInfo.currentCmdBuf()->invalidateState(); drawable->draw(info); fGpu->addDrawable(std::move(drawable)); if (bounds.extent.width == 0 || bounds.extent.height == 0) { cbInfo.fBounds.join(target->getBoundsRect()); } else { cbInfo.fBounds.join(SkRect::MakeXYWH(bounds.offset.x, bounds.offset.y, bounds.extent.width, bounds.extent.height)); } }