/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrLatticeOp.h" #include "GrDefaultGeoProcFactory.h" #include "GrDrawOpTest.h" #include "GrGpu.h" #include "GrMeshDrawOp.h" #include "GrOpFlushState.h" #include "GrResourceProvider.h" #include "GrResourceProviderPriv.h" #include "GrSimpleMeshDrawOpHelper.h" #include "GrVertexWriter.h" #include "SkBitmap.h" #include "SkLatticeIter.h" #include "SkMatrixPriv.h" #include "SkRect.h" #include "glsl/GrGLSLColorSpaceXformHelper.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVarying.h" namespace { class LatticeGP : public GrGeometryProcessor { public: static sk_sp<GrGeometryProcessor> Make(GrGpu* gpu, const GrTextureProxy* proxy, sk_sp<GrColorSpaceXform> csxf, GrSamplerState::Filter filter, bool wideColor) { return sk_sp<GrGeometryProcessor>( new LatticeGP(gpu, proxy, std::move(csxf), filter, wideColor)); } const char* name() const override { return "LatticeGP"; } void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { b->add32(GrColorSpaceXform::XformKey(fColorSpaceXform.get())); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps& caps) const override { class GLSLProcessor : public GrGLSLGeometryProcessor { public: void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc, FPCoordTransformIter&& transformIter) override { const auto& latticeGP = proc.cast<LatticeGP>(); this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); fColorSpaceXformHelper.setData(pdman, latticeGP.fColorSpaceXform.get()); } private: void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { using Interpolation = GrGLSLVaryingHandler::Interpolation; const auto& latticeGP = args.fGP.cast<LatticeGP>(); fColorSpaceXformHelper.emitCode(args.fUniformHandler, latticeGP.fColorSpaceXform.get()); args.fVaryingHandler->emitAttributes(latticeGP); this->writeOutputPosition(args.fVertBuilder, gpArgs, latticeGP.fInPosition.name()); this->emitTransforms(args.fVertBuilder, args.fVaryingHandler, args.fUniformHandler, latticeGP.fInTextureCoords.asShaderVar(), args.fFPCoordTransformHandler); args.fFragBuilder->codeAppend("float2 textureCoords;"); args.fVaryingHandler->addPassThroughAttribute(latticeGP.fInTextureCoords, "textureCoords"); args.fFragBuilder->codeAppend("float4 textureDomain;"); args.fVaryingHandler->addPassThroughAttribute( latticeGP.fInTextureDomain, "textureDomain", Interpolation::kCanBeFlat); args.fVaryingHandler->addPassThroughAttribute(latticeGP.fInColor, args.fOutputColor, Interpolation::kCanBeFlat); args.fFragBuilder->codeAppendf("%s = ", args.fOutputColor); args.fFragBuilder->appendTextureLookupAndModulate( args.fOutputColor, args.fTexSamplers[0], "clamp(textureCoords, textureDomain.xy, textureDomain.zw)", kFloat2_GrSLType, &fColorSpaceXformHelper); args.fFragBuilder->codeAppend(";"); args.fFragBuilder->codeAppendf("%s = half4(1);", args.fOutputCoverage); } GrGLSLColorSpaceXformHelper fColorSpaceXformHelper; }; return new GLSLProcessor; } private: LatticeGP(GrGpu* gpu, const GrTextureProxy* proxy, sk_sp<GrColorSpaceXform> csxf, GrSamplerState::Filter filter, bool wideColor) : INHERITED(kLatticeGP_ClassID), fColorSpaceXform(std::move(csxf)) { GrSamplerState samplerState = GrSamplerState(GrSamplerState::WrapMode::kClamp, filter); uint32_t extraSamplerKey = gpu->getExtraSamplerKeyForProgram(samplerState, proxy->backendFormat()); fSampler.reset(proxy->textureType(), proxy->config(), samplerState, extraSamplerKey); this->setTextureSamplerCnt(1); fInPosition = {"position", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; fInTextureCoords = {"textureCoords", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; fInTextureDomain = {"textureDomain", kFloat4_GrVertexAttribType, kFloat4_GrSLType}; fInColor = MakeColorAttribute("color", wideColor); this->setVertexAttributes(&fInPosition, 4); } const TextureSampler& onTextureSampler(int) const override { return fSampler; } Attribute fInPosition; Attribute fInTextureCoords; Attribute fInTextureDomain; Attribute fInColor; sk_sp<GrColorSpaceXform> fColorSpaceXform; TextureSampler fSampler; typedef GrGeometryProcessor INHERITED; }; class NonAALatticeOp final : public GrMeshDrawOp { private: using Helper = GrSimpleMeshDrawOpHelper; public: DEFINE_OP_CLASS_ID static const int kVertsPerRect = 4; static const int kIndicesPerRect = 6; static std::unique_ptr<GrDrawOp> Make(GrContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, sk_sp<GrTextureProxy> proxy, sk_sp<GrColorSpaceXform> colorSpaceXForm, GrSamplerState::Filter filter, std::unique_ptr<SkLatticeIter> iter, const SkRect& dst) { SkASSERT(proxy); return Helper::FactoryHelper<NonAALatticeOp>(context, std::move(paint), viewMatrix, std::move(proxy), std::move(colorSpaceXForm), filter, std::move(iter), dst); } NonAALatticeOp(Helper::MakeArgs& helperArgs, const SkPMColor4f& color, const SkMatrix& viewMatrix, sk_sp<GrTextureProxy> proxy, sk_sp<GrColorSpaceXform> colorSpaceXform, GrSamplerState::Filter filter, std::unique_ptr<SkLatticeIter> iter, const SkRect& dst) : INHERITED(ClassID()) , fHelper(helperArgs, GrAAType::kNone) , fProxy(std::move(proxy)) , fColorSpaceXform(std::move(colorSpaceXform)) , fFilter(filter) { Patch& patch = fPatches.push_back(); patch.fViewMatrix = viewMatrix; patch.fColor = color; patch.fIter = std::move(iter); patch.fDst = dst; // setup bounds this->setTransformedBounds(patch.fDst, viewMatrix, HasAABloat::kNo, IsZeroArea::kNo); fWideColor = !SkPMColor4fFitsInBytes(color); } const char* name() const override { return "NonAALatticeOp"; } void visitProxies(const VisitProxyFunc& func, VisitorType) const override { func(fProxy.get()); fHelper.visitProxies(func); } #ifdef SK_DEBUG SkString dumpInfo() const override { SkString str; for (int i = 0; i < fPatches.count(); ++i) { str.appendf("%d: Color: 0x%08x Dst [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", i, fPatches[i].fColor.toBytes_RGBA(), fPatches[i].fDst.fLeft, fPatches[i].fDst.fTop, fPatches[i].fDst.fRight, fPatches[i].fDst.fBottom); } str += fHelper.dumpInfo(); str += INHERITED::dumpInfo(); return str; } #endif FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip) override { auto opaque = fPatches[0].fColor.isOpaque() && GrPixelConfigIsOpaque(fProxy->config()) ? GrProcessorAnalysisColor::Opaque::kYes : GrProcessorAnalysisColor::Opaque::kNo; auto analysisColor = GrProcessorAnalysisColor(opaque); auto result = fHelper.finalizeProcessors( caps, clip, GrProcessorAnalysisCoverage::kNone, &analysisColor); analysisColor.isConstant(&fPatches[0].fColor); return result; } private: void onPrepareDraws(Target* target) override { GrGpu* gpu = target->resourceProvider()->priv().gpu(); auto gp = LatticeGP::Make(gpu, fProxy.get(), fColorSpaceXform, fFilter, fWideColor); if (!gp) { SkDebugf("Couldn't create GrGeometryProcessor\n"); return; } int patchCnt = fPatches.count(); int numRects = 0; for (int i = 0; i < patchCnt; i++) { numRects += fPatches[i].fIter->numRectsToDraw(); } if (!numRects) { return; } const size_t kVertexStride = gp->vertexStride(); sk_sp<const GrBuffer> indexBuffer = target->resourceProvider()->refQuadIndexBuffer(); if (!indexBuffer) { SkDebugf("Could not allocate indices\n"); return; } PatternHelper helper(target, GrPrimitiveType::kTriangles, kVertexStride, std::move(indexBuffer), kVertsPerRect, kIndicesPerRect, numRects); GrVertexWriter vertices{helper.vertices()}; if (!vertices.fPtr) { SkDebugf("Could not allocate vertices\n"); return; } for (int i = 0; i < patchCnt; i++) { const Patch& patch = fPatches[i]; GrVertexColor patchColor(patch.fColor, fWideColor); // Apply the view matrix here if it is scale-translate. Otherwise, we need to // wait until we've created the dst rects. bool isScaleTranslate = patch.fViewMatrix.isScaleTranslate(); if (isScaleTranslate) { patch.fIter->mapDstScaleTranslate(patch.fViewMatrix); } SkIRect srcR; SkRect dstR; SkPoint* patchPositions = reinterpret_cast<SkPoint*>(vertices.fPtr); Sk4f scales(1.f / fProxy->width(), 1.f / fProxy->height(), 1.f / fProxy->width(), 1.f / fProxy->height()); static const Sk4f kDomainOffsets(0.5f, 0.5f, -0.5f, -0.5f); static const Sk4f kFlipOffsets(0.f, 1.f, 0.f, 1.f); static const Sk4f kFlipMuls(1.f, -1.f, 1.f, -1.f); while (patch.fIter->next(&srcR, &dstR)) { Sk4f coords(SkIntToScalar(srcR.fLeft), SkIntToScalar(srcR.fTop), SkIntToScalar(srcR.fRight), SkIntToScalar(srcR.fBottom)); Sk4f domain = coords + kDomainOffsets; coords *= scales; domain *= scales; if (fProxy->origin() == kBottomLeft_GrSurfaceOrigin) { coords = kFlipMuls * coords + kFlipOffsets; domain = SkNx_shuffle<0, 3, 2, 1>(kFlipMuls * domain + kFlipOffsets); } SkRect texDomain; SkRect texCoords; domain.store(&texDomain); coords.store(&texCoords); vertices.writeQuad(GrVertexWriter::TriStripFromRect(dstR), GrVertexWriter::TriStripFromRect(texCoords), texDomain, patchColor); } // If we didn't handle it above, apply the matrix here. if (!isScaleTranslate) { SkMatrixPriv::MapPointsWithStride(patch.fViewMatrix, patchPositions, kVertexStride, kVertsPerRect * patch.fIter->numRectsToDraw()); } } auto pipe = fHelper.makePipeline(target, 1); pipe.fFixedDynamicState->fPrimitiveProcessorTextures[0] = fProxy.get(); helper.recordDraw(target, std::move(gp), pipe.fPipeline, pipe.fFixedDynamicState); } CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override { NonAALatticeOp* that = t->cast<NonAALatticeOp>(); if (fProxy != that->fProxy) { return CombineResult::kCannotCombine; } if (fFilter != that->fFilter) { return CombineResult::kCannotCombine; } if (GrColorSpaceXform::Equals(fColorSpaceXform.get(), that->fColorSpaceXform.get())) { return CombineResult::kCannotCombine; } if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { return CombineResult::kCannotCombine; } fPatches.move_back_n(that->fPatches.count(), that->fPatches.begin()); fWideColor |= that->fWideColor; return CombineResult::kMerged; } struct Patch { SkMatrix fViewMatrix; std::unique_ptr<SkLatticeIter> fIter; SkRect fDst; SkPMColor4f fColor; }; Helper fHelper; SkSTArray<1, Patch, true> fPatches; sk_sp<GrTextureProxy> fProxy; sk_sp<GrColorSpaceXform> fColorSpaceXform; GrSamplerState::Filter fFilter; bool fWideColor; typedef GrMeshDrawOp INHERITED; }; } // anonymous namespace namespace GrLatticeOp { std::unique_ptr<GrDrawOp> MakeNonAA(GrContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, sk_sp<GrTextureProxy> proxy, sk_sp<GrColorSpaceXform> colorSpaceXform, GrSamplerState::Filter filter, std::unique_ptr<SkLatticeIter> iter, const SkRect& dst) { return NonAALatticeOp::Make(context, std::move(paint), viewMatrix, std::move(proxy), std::move(colorSpaceXform), filter, std::move(iter), dst); } }; #if GR_TEST_UTILS #include "GrContextPriv.h" #include "GrProxyProvider.h" /** Randomly divides subset into count divs. */ static void init_random_divs(int divs[], int count, int subsetStart, int subsetStop, SkRandom* random) { // Rules for lattice divs: Must be strictly increasing and in the range // [subsetStart, subsetStop). // Not terribly efficient alg for generating random divs: // 1) Start with minimum legal pixels between each div. // 2) Randomly assign the remaining pixels of the subset to divs. // 3) Convert from pixel counts to div offsets. // 1) Initially each divs[i] represents the number of pixels between // div i-1 and i. The initial div is allowed to be at subsetStart. There // must be one pixel spacing between subsequent divs. divs[0] = 0; for (int i = 1; i < count; ++i) { divs[i] = 1; } // 2) Assign the remaining subset pixels to fall int subsetLength = subsetStop - subsetStart; for (int i = 0; i < subsetLength - count; ++i) { // +1 because count divs means count+1 intervals. int entry = random->nextULessThan(count + 1); // We don't have an entry to to store the count after the last div if (entry < count) { divs[entry]++; } } // 3) Now convert the counts between divs to pixel indices, incorporating the subset's offset. int offset = subsetStart; for (int i = 0; i < count; ++i) { divs[i] += offset; offset = divs[i]; } } GR_DRAW_OP_TEST_DEFINE(NonAALatticeOp) { SkCanvas::Lattice lattice; // We loop because our random lattice code can produce an invalid lattice in the case where // there is a single div separator in both x and y and both are aligned with the left and top // edge of the image subset, respectively. std::unique_ptr<int[]> xdivs; std::unique_ptr<int[]> ydivs; std::unique_ptr<SkCanvas::Lattice::RectType[]> flags; std::unique_ptr<SkColor[]> colors; SkIRect subset; GrSurfaceDesc desc; desc.fConfig = kRGBA_8888_GrPixelConfig; desc.fWidth = random->nextRangeU(1, 1000); desc.fHeight = random->nextRangeU(1, 1000); GrSurfaceOrigin origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; const GrBackendFormat format = context->contextPriv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); auto proxy = context->contextPriv().proxyProvider()->createProxy( format, desc, origin, SkBackingFit::kExact, SkBudgeted::kYes); do { if (random->nextBool()) { subset.fLeft = random->nextULessThan(desc.fWidth); subset.fRight = random->nextRangeU(subset.fLeft + 1, desc.fWidth); subset.fTop = random->nextULessThan(desc.fHeight); subset.fBottom = random->nextRangeU(subset.fTop + 1, desc.fHeight); } else { subset.setXYWH(0, 0, desc.fWidth, desc.fHeight); } // SkCanvas::Lattice allows bounds to be null. However, SkCanvas creates a temp Lattice with // a non-null bounds before creating a SkLatticeIter since SkLatticeIter requires a bounds. lattice.fBounds = ⊂ lattice.fXCount = random->nextRangeU(1, subset.width()); lattice.fYCount = random->nextRangeU(1, subset.height()); xdivs.reset(new int[lattice.fXCount]); ydivs.reset(new int[lattice.fYCount]); init_random_divs(xdivs.get(), lattice.fXCount, subset.fLeft, subset.fRight, random); init_random_divs(ydivs.get(), lattice.fYCount, subset.fTop, subset.fBottom, random); lattice.fXDivs = xdivs.get(); lattice.fYDivs = ydivs.get(); bool hasFlags = random->nextBool(); if (hasFlags) { int n = (lattice.fXCount + 1) * (lattice.fYCount + 1); flags.reset(new SkCanvas::Lattice::RectType[n]); colors.reset(new SkColor[n]); for (int i = 0; i < n; ++i) { flags[i] = random->nextBool() ? SkCanvas::Lattice::kTransparent : SkCanvas::Lattice::kDefault; } lattice.fRectTypes = flags.get(); lattice.fColors = colors.get(); } else { lattice.fRectTypes = nullptr; lattice.fColors = nullptr; } } while (!SkLatticeIter::Valid(desc.fWidth, desc.fHeight, lattice)); SkRect dst; dst.fLeft = random->nextRangeScalar(-2000.5f, 1000.f); dst.fTop = random->nextRangeScalar(-2000.5f, 1000.f); dst.fRight = dst.fLeft + random->nextRangeScalar(0.5f, 1000.f); dst.fBottom = dst.fTop + random->nextRangeScalar(0.5f, 1000.f); std::unique_ptr<SkLatticeIter> iter(new SkLatticeIter(lattice, dst)); SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); auto csxf = GrTest::TestColorXform(random); GrSamplerState::Filter filter = random->nextBool() ? GrSamplerState::Filter::kNearest : GrSamplerState::Filter::kBilerp; return NonAALatticeOp::Make(context, std::move(paint), viewMatrix, std::move(proxy), std::move(csxf), filter, std::move(iter), dst); } #endif