/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkResourceCache.h" #include "SkDiscardableMemory.h" #include "SkMessageBus.h" #include "SkMipMap.h" #include "SkMutex.h" #include "SkOpts.h" #include "SkTo.h" #include "SkTraceMemoryDump.h" #include <stddef.h> #include <stdlib.h> DECLARE_SKMESSAGEBUS_MESSAGE(SkResourceCache::PurgeSharedIDMessage) static inline bool SkShouldPostMessageToBus( const SkResourceCache::PurgeSharedIDMessage&, uint32_t) { // SkResourceCache is typically used as a singleton and we don't label Inboxes so all messages // go to all inboxes. return true; } // This can be defined by the caller's build system //#define SK_USE_DISCARDABLE_SCALEDIMAGECACHE #ifndef SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT # define SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT 1024 #endif #ifndef SK_DEFAULT_IMAGE_CACHE_LIMIT #define SK_DEFAULT_IMAGE_CACHE_LIMIT (32 * 1024 * 1024) #endif void SkResourceCache::Key::init(void* nameSpace, uint64_t sharedID, size_t dataSize) { SkASSERT(SkAlign4(dataSize) == dataSize); // fCount32 and fHash are not hashed static const int kUnhashedLocal32s = 2; // fCache32 + fHash static const int kSharedIDLocal32s = 2; // fSharedID_lo + fSharedID_hi static const int kHashedLocal32s = kSharedIDLocal32s + (sizeof(fNamespace) >> 2); static const int kLocal32s = kUnhashedLocal32s + kHashedLocal32s; static_assert(sizeof(Key) == (kLocal32s << 2), "unaccounted_key_locals"); static_assert(sizeof(Key) == offsetof(Key, fNamespace) + sizeof(fNamespace), "namespace_field_must_be_last"); fCount32 = SkToS32(kLocal32s + (dataSize >> 2)); fSharedID_lo = (uint32_t)sharedID; fSharedID_hi = (uint32_t)(sharedID >> 32); fNamespace = nameSpace; // skip unhashed fields when computing the hash fHash = SkOpts::hash(this->as32() + kUnhashedLocal32s, (fCount32 - kUnhashedLocal32s) << 2); } #include "SkTHash.h" namespace { struct HashTraits { static uint32_t Hash(const SkResourceCache::Key& key) { return key.hash(); } static const SkResourceCache::Key& GetKey(const SkResourceCache::Rec* rec) { return rec->getKey(); } }; } class SkResourceCache::Hash : public SkTHashTable<SkResourceCache::Rec*, SkResourceCache::Key, HashTraits> {}; /////////////////////////////////////////////////////////////////////////////// void SkResourceCache::init() { fHead = nullptr; fTail = nullptr; fHash = new Hash; fTotalBytesUsed = 0; fCount = 0; fSingleAllocationByteLimit = 0; // One of these should be explicit set by the caller after we return. fTotalByteLimit = 0; fDiscardableFactory = nullptr; } SkResourceCache::SkResourceCache(DiscardableFactory factory) { this->init(); fDiscardableFactory = factory; } SkResourceCache::SkResourceCache(size_t byteLimit) { this->init(); fTotalByteLimit = byteLimit; } SkResourceCache::~SkResourceCache() { Rec* rec = fHead; while (rec) { Rec* next = rec->fNext; delete rec; rec = next; } delete fHash; } //////////////////////////////////////////////////////////////////////////////// bool SkResourceCache::find(const Key& key, FindVisitor visitor, void* context) { this->checkMessages(); if (auto found = fHash->find(key)) { Rec* rec = *found; if (visitor(*rec, context)) { this->moveToHead(rec); // for our LRU return true; } else { this->remove(rec); // stale return false; } } return false; } static void make_size_str(size_t size, SkString* str) { const char suffix[] = { 'b', 'k', 'm', 'g', 't', 0 }; int i = 0; while (suffix[i] && (size > 1024)) { i += 1; size >>= 10; } str->printf("%zu%c", size, suffix[i]); } static bool gDumpCacheTransactions; void SkResourceCache::add(Rec* rec, void* payload) { this->checkMessages(); SkASSERT(rec); // See if we already have this key (racy inserts, etc.) if (Rec** preexisting = fHash->find(rec->getKey())) { Rec* prev = *preexisting; if (prev->canBePurged()) { // if it can be purged, the install may fail, so we have to remove it this->remove(prev); } else { // if it cannot be purged, we reuse it and delete the new one prev->postAddInstall(payload); delete rec; return; } } this->addToHead(rec); fHash->set(rec); rec->postAddInstall(payload); if (gDumpCacheTransactions) { SkString bytesStr, totalStr; make_size_str(rec->bytesUsed(), &bytesStr); make_size_str(fTotalBytesUsed, &totalStr); SkDebugf("RC: add %5s %12p key %08x -- total %5s, count %d\n", bytesStr.c_str(), rec, rec->getHash(), totalStr.c_str(), fCount); } // since the new rec may push us over-budget, we perform a purge check now this->purgeAsNeeded(); } void SkResourceCache::remove(Rec* rec) { SkASSERT(rec->canBePurged()); size_t used = rec->bytesUsed(); SkASSERT(used <= fTotalBytesUsed); this->release(rec); fHash->remove(rec->getKey()); fTotalBytesUsed -= used; fCount -= 1; //SkDebugf("-RC count [%3d] bytes %d\n", fCount, fTotalBytesUsed); if (gDumpCacheTransactions) { SkString bytesStr, totalStr; make_size_str(used, &bytesStr); make_size_str(fTotalBytesUsed, &totalStr); SkDebugf("RC: remove %5s %12p key %08x -- total %5s, count %d\n", bytesStr.c_str(), rec, rec->getHash(), totalStr.c_str(), fCount); } delete rec; } void SkResourceCache::purgeAsNeeded(bool forcePurge) { size_t byteLimit; int countLimit; if (fDiscardableFactory) { countLimit = SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT; byteLimit = UINT32_MAX; // no limit based on bytes } else { countLimit = SK_MaxS32; // no limit based on count byteLimit = fTotalByteLimit; } Rec* rec = fTail; while (rec) { if (!forcePurge && fTotalBytesUsed < byteLimit && fCount < countLimit) { break; } Rec* prev = rec->fPrev; if (rec->canBePurged()) { this->remove(rec); } rec = prev; } } //#define SK_TRACK_PURGE_SHAREDID_HITRATE #ifdef SK_TRACK_PURGE_SHAREDID_HITRATE static int gPurgeCallCounter; static int gPurgeHitCounter; #endif void SkResourceCache::purgeSharedID(uint64_t sharedID) { if (0 == sharedID) { return; } #ifdef SK_TRACK_PURGE_SHAREDID_HITRATE gPurgeCallCounter += 1; bool found = false; #endif // go backwards, just like purgeAsNeeded, just to make the code similar. // could iterate either direction and still be correct. Rec* rec = fTail; while (rec) { Rec* prev = rec->fPrev; if (rec->getKey().getSharedID() == sharedID) { // even though the "src" is now dead, caches could still be in-flight, so // we have to check if it can be removed. if (rec->canBePurged()) { this->remove(rec); } #ifdef SK_TRACK_PURGE_SHAREDID_HITRATE found = true; #endif } rec = prev; } #ifdef SK_TRACK_PURGE_SHAREDID_HITRATE if (found) { gPurgeHitCounter += 1; } SkDebugf("PurgeShared calls=%d hits=%d rate=%g\n", gPurgeCallCounter, gPurgeHitCounter, gPurgeHitCounter * 100.0 / gPurgeCallCounter); #endif } void SkResourceCache::visitAll(Visitor visitor, void* context) { // go backwards, just like purgeAsNeeded, just to make the code similar. // could iterate either direction and still be correct. Rec* rec = fTail; while (rec) { visitor(*rec, context); rec = rec->fPrev; } } /////////////////////////////////////////////////////////////////////////////////////////////////// size_t SkResourceCache::setTotalByteLimit(size_t newLimit) { size_t prevLimit = fTotalByteLimit; fTotalByteLimit = newLimit; if (newLimit < prevLimit) { this->purgeAsNeeded(); } return prevLimit; } SkCachedData* SkResourceCache::newCachedData(size_t bytes) { this->checkMessages(); if (fDiscardableFactory) { SkDiscardableMemory* dm = fDiscardableFactory(bytes); return dm ? new SkCachedData(bytes, dm) : nullptr; } else { return new SkCachedData(sk_malloc_throw(bytes), bytes); } } /////////////////////////////////////////////////////////////////////////////// void SkResourceCache::release(Rec* rec) { Rec* prev = rec->fPrev; Rec* next = rec->fNext; if (!prev) { SkASSERT(fHead == rec); fHead = next; } else { prev->fNext = next; } if (!next) { fTail = prev; } else { next->fPrev = prev; } rec->fNext = rec->fPrev = nullptr; } void SkResourceCache::moveToHead(Rec* rec) { if (fHead == rec) { return; } SkASSERT(fHead); SkASSERT(fTail); this->validate(); this->release(rec); fHead->fPrev = rec; rec->fNext = fHead; fHead = rec; this->validate(); } void SkResourceCache::addToHead(Rec* rec) { this->validate(); rec->fPrev = nullptr; rec->fNext = fHead; if (fHead) { fHead->fPrev = rec; } fHead = rec; if (!fTail) { fTail = rec; } fTotalBytesUsed += rec->bytesUsed(); fCount += 1; this->validate(); } /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkResourceCache::validate() const { if (nullptr == fHead) { SkASSERT(nullptr == fTail); SkASSERT(0 == fTotalBytesUsed); return; } if (fHead == fTail) { SkASSERT(nullptr == fHead->fPrev); SkASSERT(nullptr == fHead->fNext); SkASSERT(fHead->bytesUsed() == fTotalBytesUsed); return; } SkASSERT(nullptr == fHead->fPrev); SkASSERT(fHead->fNext); SkASSERT(nullptr == fTail->fNext); SkASSERT(fTail->fPrev); size_t used = 0; int count = 0; const Rec* rec = fHead; while (rec) { count += 1; used += rec->bytesUsed(); SkASSERT(used <= fTotalBytesUsed); rec = rec->fNext; } SkASSERT(fCount == count); rec = fTail; while (rec) { SkASSERT(count > 0); count -= 1; SkASSERT(used >= rec->bytesUsed()); used -= rec->bytesUsed(); rec = rec->fPrev; } SkASSERT(0 == count); SkASSERT(0 == used); } #endif void SkResourceCache::dump() const { this->validate(); SkDebugf("SkResourceCache: count=%d bytes=%d %s\n", fCount, fTotalBytesUsed, fDiscardableFactory ? "discardable" : "malloc"); } size_t SkResourceCache::setSingleAllocationByteLimit(size_t newLimit) { size_t oldLimit = fSingleAllocationByteLimit; fSingleAllocationByteLimit = newLimit; return oldLimit; } size_t SkResourceCache::getSingleAllocationByteLimit() const { return fSingleAllocationByteLimit; } size_t SkResourceCache::getEffectiveSingleAllocationByteLimit() const { // fSingleAllocationByteLimit == 0 means the caller is asking for our default size_t limit = fSingleAllocationByteLimit; // if we're not discardable (i.e. we are fixed-budget) then cap the single-limit // to our budget. if (nullptr == fDiscardableFactory) { if (0 == limit) { limit = fTotalByteLimit; } else { limit = SkTMin(limit, fTotalByteLimit); } } return limit; } void SkResourceCache::checkMessages() { SkTArray<PurgeSharedIDMessage> msgs; fPurgeSharedIDInbox.poll(&msgs); for (int i = 0; i < msgs.count(); ++i) { this->purgeSharedID(msgs[i].fSharedID); } } /////////////////////////////////////////////////////////////////////////////// SK_DECLARE_STATIC_MUTEX(gMutex); static SkResourceCache* gResourceCache = nullptr; /** Must hold gMutex when calling. */ static SkResourceCache* get_cache() { // gMutex is always held when this is called, so we don't need to be fancy in here. gMutex.assertHeld(); if (nullptr == gResourceCache) { #ifdef SK_USE_DISCARDABLE_SCALEDIMAGECACHE gResourceCache = new SkResourceCache(SkDiscardableMemory::Create); #else gResourceCache = new SkResourceCache(SK_DEFAULT_IMAGE_CACHE_LIMIT); #endif } return gResourceCache; } size_t SkResourceCache::GetTotalBytesUsed() { SkAutoMutexAcquire am(gMutex); return get_cache()->getTotalBytesUsed(); } size_t SkResourceCache::GetTotalByteLimit() { SkAutoMutexAcquire am(gMutex); return get_cache()->getTotalByteLimit(); } size_t SkResourceCache::SetTotalByteLimit(size_t newLimit) { SkAutoMutexAcquire am(gMutex); return get_cache()->setTotalByteLimit(newLimit); } SkResourceCache::DiscardableFactory SkResourceCache::GetDiscardableFactory() { SkAutoMutexAcquire am(gMutex); return get_cache()->discardableFactory(); } SkCachedData* SkResourceCache::NewCachedData(size_t bytes) { SkAutoMutexAcquire am(gMutex); return get_cache()->newCachedData(bytes); } void SkResourceCache::Dump() { SkAutoMutexAcquire am(gMutex); get_cache()->dump(); } size_t SkResourceCache::SetSingleAllocationByteLimit(size_t size) { SkAutoMutexAcquire am(gMutex); return get_cache()->setSingleAllocationByteLimit(size); } size_t SkResourceCache::GetSingleAllocationByteLimit() { SkAutoMutexAcquire am(gMutex); return get_cache()->getSingleAllocationByteLimit(); } size_t SkResourceCache::GetEffectiveSingleAllocationByteLimit() { SkAutoMutexAcquire am(gMutex); return get_cache()->getEffectiveSingleAllocationByteLimit(); } void SkResourceCache::PurgeAll() { SkAutoMutexAcquire am(gMutex); return get_cache()->purgeAll(); } bool SkResourceCache::Find(const Key& key, FindVisitor visitor, void* context) { SkAutoMutexAcquire am(gMutex); return get_cache()->find(key, visitor, context); } void SkResourceCache::Add(Rec* rec, void* payload) { SkAutoMutexAcquire am(gMutex); get_cache()->add(rec, payload); } void SkResourceCache::VisitAll(Visitor visitor, void* context) { SkAutoMutexAcquire am(gMutex); get_cache()->visitAll(visitor, context); } void SkResourceCache::PostPurgeSharedID(uint64_t sharedID) { if (sharedID) { SkMessageBus<PurgeSharedIDMessage>::Post(PurgeSharedIDMessage(sharedID)); } } /////////////////////////////////////////////////////////////////////////////// #include "SkGraphics.h" #include "SkImageFilter.h" size_t SkGraphics::GetResourceCacheTotalBytesUsed() { return SkResourceCache::GetTotalBytesUsed(); } size_t SkGraphics::GetResourceCacheTotalByteLimit() { return SkResourceCache::GetTotalByteLimit(); } size_t SkGraphics::SetResourceCacheTotalByteLimit(size_t newLimit) { return SkResourceCache::SetTotalByteLimit(newLimit); } size_t SkGraphics::GetResourceCacheSingleAllocationByteLimit() { return SkResourceCache::GetSingleAllocationByteLimit(); } size_t SkGraphics::SetResourceCacheSingleAllocationByteLimit(size_t newLimit) { return SkResourceCache::SetSingleAllocationByteLimit(newLimit); } void SkGraphics::PurgeResourceCache() { SkImageFilter::PurgeCache(); return SkResourceCache::PurgeAll(); } ///////////// static void dump_visitor(const SkResourceCache::Rec& rec, void*) { SkDebugf("RC: %12s bytes %9lu discardable %p\n", rec.getCategory(), rec.bytesUsed(), rec.diagnostic_only_getDiscardable()); } void SkResourceCache::TestDumpMemoryStatistics() { VisitAll(dump_visitor, nullptr); } static void sk_trace_dump_visitor(const SkResourceCache::Rec& rec, void* context) { SkTraceMemoryDump* dump = static_cast<SkTraceMemoryDump*>(context); SkString dumpName = SkStringPrintf("skia/sk_resource_cache/%s_%p", rec.getCategory(), &rec); SkDiscardableMemory* discardable = rec.diagnostic_only_getDiscardable(); if (discardable) { dump->setDiscardableMemoryBacking(dumpName.c_str(), *discardable); // The discardable memory size will be calculated by dumper, but we also dump what we think // the size of object in memory is irrespective of whether object is live or dead. dump->dumpNumericValue(dumpName.c_str(), "discardable_size", "bytes", rec.bytesUsed()); } else { dump->dumpNumericValue(dumpName.c_str(), "size", "bytes", rec.bytesUsed()); dump->setMemoryBacking(dumpName.c_str(), "malloc", nullptr); } } void SkResourceCache::DumpMemoryStatistics(SkTraceMemoryDump* dump) { // Since resource could be backed by malloc or discardable, the cache always dumps detailed // stats to be accurate. VisitAll(sk_trace_dump_visitor, dump); }