/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPathMeasure.h" #include "SkPathMeasurePriv.h" #include "SkGeometry.h" #include "SkPath.h" #include "SkTSearch.h" #define kMaxTValue 0x3FFFFFFF static inline SkScalar tValue2Scalar(int t) { SkASSERT((unsigned)t <= kMaxTValue); const SkScalar kMaxTReciprocal = 1.0f / kMaxTValue; return t * kMaxTReciprocal; } SkScalar SkPathMeasure::Segment::getScalarT() const { return tValue2Scalar(fTValue); } const SkPathMeasure::Segment* SkPathMeasure::NextSegment(const Segment* seg) { unsigned ptIndex = seg->fPtIndex; do { ++seg; } while (seg->fPtIndex == ptIndex); return seg; } void SkPathMeasure_segTo(const SkPoint pts[], unsigned segType, SkScalar startT, SkScalar stopT, SkPath* dst) { SkASSERT(startT >= 0 && startT <= SK_Scalar1); SkASSERT(stopT >= 0 && stopT <= SK_Scalar1); SkASSERT(startT <= stopT); if (startT == stopT) { if (!dst->isEmpty()) { /* if the dash as a zero-length on segment, add a corresponding zero-length line. The stroke code will add end caps to zero length lines as appropriate */ SkPoint lastPt; SkAssertResult(dst->getLastPt(&lastPt)); dst->lineTo(lastPt); } return; } SkPoint tmp0[7], tmp1[7]; switch (segType) { case kLine_SegType: if (SK_Scalar1 == stopT) { dst->lineTo(pts[1]); } else { dst->lineTo(SkScalarInterp(pts[0].fX, pts[1].fX, stopT), SkScalarInterp(pts[0].fY, pts[1].fY, stopT)); } break; case kQuad_SegType: if (0 == startT) { if (SK_Scalar1 == stopT) { dst->quadTo(pts[1], pts[2]); } else { SkChopQuadAt(pts, tmp0, stopT); dst->quadTo(tmp0[1], tmp0[2]); } } else { SkChopQuadAt(pts, tmp0, startT); if (SK_Scalar1 == stopT) { dst->quadTo(tmp0[3], tmp0[4]); } else { SkChopQuadAt(&tmp0[2], tmp1, (stopT - startT) / (1 - startT)); dst->quadTo(tmp1[1], tmp1[2]); } } break; case kConic_SegType: { SkConic conic(pts[0], pts[2], pts[3], pts[1].fX); if (0 == startT) { if (SK_Scalar1 == stopT) { dst->conicTo(conic.fPts[1], conic.fPts[2], conic.fW); } else { SkConic tmp[2]; if (conic.chopAt(stopT, tmp)) { dst->conicTo(tmp[0].fPts[1], tmp[0].fPts[2], tmp[0].fW); } } } else { if (SK_Scalar1 == stopT) { SkConic tmp1[2]; if (conic.chopAt(startT, tmp1)) { dst->conicTo(tmp1[1].fPts[1], tmp1[1].fPts[2], tmp1[1].fW); } } else { SkConic tmp; conic.chopAt(startT, stopT, &tmp); dst->conicTo(tmp.fPts[1], tmp.fPts[2], tmp.fW); } } } break; case kCubic_SegType: if (0 == startT) { if (SK_Scalar1 == stopT) { dst->cubicTo(pts[1], pts[2], pts[3]); } else { SkChopCubicAt(pts, tmp0, stopT); dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]); } } else { SkChopCubicAt(pts, tmp0, startT); if (SK_Scalar1 == stopT) { dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]); } else { SkChopCubicAt(&tmp0[3], tmp1, (stopT - startT) / (1 - startT)); dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]); } } break; default: SK_ABORT("unknown segType"); } } /////////////////////////////////////////////////////////////////////////////// static inline int tspan_big_enough(int tspan) { SkASSERT((unsigned)tspan <= kMaxTValue); return tspan >> 10; } // can't use tangents, since we need [0..1..................2] to be seen // as definitely not a line (it is when drawn, but not parametrically) // so we compare midpoints #define CHEAP_DIST_LIMIT (SK_Scalar1/2) // just made this value up bool SkPathMeasure::quad_too_curvy(const SkPoint pts[3]) { // diff = (a/4 + b/2 + c/4) - (a/2 + c/2) // diff = -a/4 + b/2 - c/4 SkScalar dx = SkScalarHalf(pts[1].fX) - SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX)); SkScalar dy = SkScalarHalf(pts[1].fY) - SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY)); SkScalar dist = SkMaxScalar(SkScalarAbs(dx), SkScalarAbs(dy)); return dist > fTolerance; } bool SkPathMeasure::conic_too_curvy(const SkPoint& firstPt, const SkPoint& midTPt, const SkPoint& lastPt) { SkPoint midEnds = firstPt + lastPt; midEnds *= 0.5f; SkVector dxy = midTPt - midEnds; SkScalar dist = SkMaxScalar(SkScalarAbs(dxy.fX), SkScalarAbs(dxy.fY)); return dist > fTolerance; } bool SkPathMeasure::cheap_dist_exceeds_limit(const SkPoint& pt, SkScalar x, SkScalar y) { SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY)); // just made up the 1/2 return dist > fTolerance; } bool SkPathMeasure::cubic_too_curvy(const SkPoint pts[4]) { return cheap_dist_exceeds_limit(pts[1], SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3), SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3)) || cheap_dist_exceeds_limit(pts[2], SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3), SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3)); } static SkScalar quad_folded_len(const SkPoint pts[3]) { SkScalar t = SkFindQuadMaxCurvature(pts); SkPoint pt = SkEvalQuadAt(pts, t); SkVector a = pts[2] - pt; SkScalar result = a.length(); if (0 != t && 1 != t) { SkVector b = pts[0] - pt; result += b.length(); } SkASSERT(SkScalarIsFinite(result)); return result; } /* from http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/ */ /* This works -- more needs to be done to see if it is performant on all platforms. To use this to measure parts of quads requires recomputing everything -- perhaps a chop-like interface can start from a larger measurement and get two new measurements with one call here. */ static SkScalar compute_quad_len(const SkPoint pts[3]) { SkPoint a,b; a.fX = pts[0].fX - 2 * pts[1].fX + pts[2].fX; a.fY = pts[0].fY - 2 * pts[1].fY + pts[2].fY; SkScalar A = 4 * (a.fX * a.fX + a.fY * a.fY); if (0 == A) { a = pts[2] - pts[0]; return a.length(); } b.fX = 2 * (pts[1].fX - pts[0].fX); b.fY = 2 * (pts[1].fY - pts[0].fY); SkScalar B = 4 * (a.fX * b.fX + a.fY * b.fY); SkScalar C = b.fX * b.fX + b.fY * b.fY; SkScalar Sabc = 2 * SkScalarSqrt(A + B + C); SkScalar A_2 = SkScalarSqrt(A); SkScalar A_32 = 2 * A * A_2; SkScalar C_2 = 2 * SkScalarSqrt(C); SkScalar BA = B / A_2; if (0 == BA + C_2) { return quad_folded_len(pts); } SkScalar J = A_32 * Sabc + A_2 * B * (Sabc - C_2); SkScalar K = 4 * C * A - B * B; SkScalar L = (2 * A_2 + BA + Sabc) / (BA + C_2); if (L <= 0) { return quad_folded_len(pts); } SkScalar M = SkScalarLog(L); SkScalar result = (J + K * M) / (4 * A_32); SkASSERT(SkScalarIsFinite(result)); return result; } SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3], SkScalar distance, int mint, int maxt, unsigned ptIndex) { #if defined(IS_FUZZING_WITH_LIBFUZZER) --fSubdivisionsMax; #endif if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) { SkPoint tmp[5]; int halft = (mint + maxt) >> 1; SkChopQuadAtHalf(pts, tmp); distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex); distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex); } else { SkScalar d = SkPoint::Distance(pts[0], pts[2]); SkScalar prevD = distance; distance += d; if (distance > prevD) { Segment* seg = fSegments.append(); seg->fDistance = distance; seg->fPtIndex = ptIndex; seg->fType = kQuad_SegType; seg->fTValue = maxt; } } return distance; } SkScalar SkPathMeasure::compute_conic_segs(const SkConic& conic, SkScalar distance, int mint, const SkPoint& minPt, int maxt, const SkPoint& maxPt, unsigned ptIndex) { #if defined(IS_FUZZING_WITH_LIBFUZZER) --fSubdivisionsMax; #endif int halft = (mint + maxt) >> 1; SkPoint halfPt = conic.evalAt(tValue2Scalar(halft)); if (!halfPt.isFinite()) { return distance; } if (tspan_big_enough(maxt - mint) && conic_too_curvy(minPt, halfPt, maxPt)) { distance = this->compute_conic_segs(conic, distance, mint, minPt, halft, halfPt, ptIndex); distance = this->compute_conic_segs(conic, distance, halft, halfPt, maxt, maxPt, ptIndex); } else { SkScalar d = SkPoint::Distance(minPt, maxPt); SkScalar prevD = distance; distance += d; if (distance > prevD) { Segment* seg = fSegments.append(); seg->fDistance = distance; seg->fPtIndex = ptIndex; seg->fType = kConic_SegType; seg->fTValue = maxt; } } return distance; } SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4], SkScalar distance, int mint, int maxt, unsigned ptIndex) { #if defined(IS_FUZZING_WITH_LIBFUZZER) --fSubdivisionsMax; #endif if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts)) { SkPoint tmp[7]; int halft = (mint + maxt) >> 1; SkChopCubicAtHalf(pts, tmp); distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex); distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIndex); } else { SkScalar d = SkPoint::Distance(pts[0], pts[3]); SkScalar prevD = distance; distance += d; if (distance > prevD) { Segment* seg = fSegments.append(); seg->fDistance = distance; seg->fPtIndex = ptIndex; seg->fType = kCubic_SegType; seg->fTValue = maxt; } } return distance; } void SkPathMeasure::buildSegments() { SkPoint pts[4]; unsigned ptIndex = fFirstPtIndex; SkScalar distance = 0; bool isClosed = fForceClosed; bool firstMoveTo = ptIndex == (unsigned) -1; Segment* seg; /* Note: * as we accumulate distance, we have to check that the result of += * actually made it larger, since a very small delta might be > 0, but * still have no effect on distance (if distance >>> delta). * * We do this check below, and in compute_quad_segs and compute_cubic_segs */ fSegments.reset(); bool done = false; #if defined(IS_FUZZING_WITH_LIBFUZZER) fSubdivisionsMax = 10000000; #endif do { switch (fIter.next(pts)) { case SkPath::kMove_Verb: ptIndex += 1; fPts.append(1, pts); if (!firstMoveTo) { done = true; break; } firstMoveTo = false; break; case SkPath::kLine_Verb: { SkScalar d = SkPoint::Distance(pts[0], pts[1]); SkASSERT(d >= 0); SkScalar prevD = distance; distance += d; if (distance > prevD) { seg = fSegments.append(); seg->fDistance = distance; seg->fPtIndex = ptIndex; seg->fType = kLine_SegType; seg->fTValue = kMaxTValue; fPts.append(1, pts + 1); ptIndex++; } } break; case SkPath::kQuad_Verb: { SkScalar prevD = distance; if (false) { SkScalar length = compute_quad_len(pts); if (length) { distance += length; Segment* seg = fSegments.append(); seg->fDistance = distance; seg->fPtIndex = ptIndex; seg->fType = kQuad_SegType; seg->fTValue = kMaxTValue; } } else { distance = this->compute_quad_segs(pts, distance, 0, kMaxTValue, ptIndex); } if (distance > prevD) { fPts.append(2, pts + 1); ptIndex += 2; } } break; case SkPath::kConic_Verb: { const SkConic conic(pts, fIter.conicWeight()); SkScalar prevD = distance; distance = this->compute_conic_segs(conic, distance, 0, conic.fPts[0], kMaxTValue, conic.fPts[2], ptIndex); if (distance > prevD) { // we store the conic weight in our next point, followed by the last 2 pts // thus to reconstitue a conic, you'd need to say // SkConic(pts[0], pts[2], pts[3], weight = pts[1].fX) fPts.append()->set(conic.fW, 0); fPts.append(2, pts + 1); ptIndex += 3; } } break; case SkPath::kCubic_Verb: { SkScalar prevD = distance; distance = this->compute_cubic_segs(pts, distance, 0, kMaxTValue, ptIndex); if (distance > prevD) { fPts.append(3, pts + 1); ptIndex += 3; } } break; case SkPath::kClose_Verb: isClosed = true; break; case SkPath::kDone_Verb: done = true; break; } #if defined(IS_FUZZING_WITH_LIBFUZZER) if (fSubdivisionsMax < 0) { fLength = 0; return; } #endif } while (!done); fLength = distance; fIsClosed = isClosed; fFirstPtIndex = ptIndex; #ifdef SK_DEBUG { const Segment* seg = fSegments.begin(); const Segment* stop = fSegments.end(); unsigned ptIndex = 0; SkScalar distance = 0; // limit the loop to a reasonable number; pathological cases can run for minutes int maxChecks = 10000000; // set to INT_MAX to defeat the check while (seg < stop) { SkASSERT(seg->fDistance > distance); SkASSERT(seg->fPtIndex >= ptIndex); SkASSERT(seg->fTValue > 0); const Segment* s = seg; while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex && --maxChecks > 0) { SkASSERT(s[0].fType == s[1].fType); SkASSERT(s[0].fTValue < s[1].fTValue); s += 1; } distance = seg->fDistance; ptIndex = seg->fPtIndex; seg += 1; } // SkDebugf("\n"); } #endif } static void compute_pos_tan(const SkPoint pts[], unsigned segType, SkScalar t, SkPoint* pos, SkVector* tangent) { switch (segType) { case kLine_SegType: if (pos) { pos->set(SkScalarInterp(pts[0].fX, pts[1].fX, t), SkScalarInterp(pts[0].fY, pts[1].fY, t)); } if (tangent) { tangent->setNormalize(pts[1].fX - pts[0].fX, pts[1].fY - pts[0].fY); } break; case kQuad_SegType: SkEvalQuadAt(pts, t, pos, tangent); if (tangent) { tangent->normalize(); } break; case kConic_SegType: { SkConic(pts[0], pts[2], pts[3], pts[1].fX).evalAt(t, pos, tangent); if (tangent) { tangent->normalize(); } } break; case kCubic_SegType: SkEvalCubicAt(pts, t, pos, tangent, nullptr); if (tangent) { tangent->normalize(); } break; default: SkDEBUGFAIL("unknown segType"); } } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// SkPathMeasure::SkPathMeasure() { fTolerance = CHEAP_DIST_LIMIT; fLength = -1; // signal we need to compute it fForceClosed = false; fFirstPtIndex = -1; } SkPathMeasure::SkPathMeasure(const SkPath& path, bool forceClosed, SkScalar resScale) { fPath = path.isFinite() ? path : SkPath(); fTolerance = CHEAP_DIST_LIMIT * SkScalarInvert(resScale); fLength = -1; // signal we need to compute it fForceClosed = forceClosed; fFirstPtIndex = -1; fIter.setPath(fPath, forceClosed); } SkPathMeasure::~SkPathMeasure() {} /** Assign a new path, or null to have none. */ void SkPathMeasure::setPath(const SkPath* path, bool forceClosed) { if (path && path->isFinite()) { fPath = *path; } else { fPath.reset(); } fLength = -1; // signal we need to compute it fForceClosed = forceClosed; fFirstPtIndex = -1; fIter.setPath(fPath, forceClosed); fSegments.reset(); fPts.reset(); } SkScalar SkPathMeasure::getLength() { if (fLength < 0) { this->buildSegments(); } if (SkScalarIsNaN(fLength)) { fLength = 0; fSegments.reset(); // may contain inf or NaN, which will fail later } SkASSERT(fLength >= 0); return fLength; } template <typename T, typename K> int SkTKSearch(const T base[], int count, const K& key) { SkASSERT(count >= 0); if (count <= 0) { return ~0; } SkASSERT(base != nullptr); // base may be nullptr if count is zero unsigned lo = 0; unsigned hi = count - 1; while (lo < hi) { unsigned mid = (hi + lo) >> 1; if (base[mid].fDistance < key) { lo = mid + 1; } else { hi = mid; } } if (base[hi].fDistance < key) { hi += 1; hi = ~hi; } else if (key < base[hi].fDistance) { hi = ~hi; } return hi; } const SkPathMeasure::Segment* SkPathMeasure::distanceToSegment( SkScalar distance, SkScalar* t) { SkDEBUGCODE(SkScalar length = ) this->getLength(); SkASSERT(distance >= 0 && distance <= length); const Segment* seg = fSegments.begin(); int count = fSegments.count(); int index = SkTKSearch<Segment, SkScalar>(seg, count, distance); // don't care if we hit an exact match or not, so we xor index if it is negative index ^= (index >> 31); seg = &seg[index]; // now interpolate t-values with the prev segment (if possible) SkScalar startT = 0, startD = 0; // check if the prev segment is legal, and references the same set of points if (index > 0) { startD = seg[-1].fDistance; if (seg[-1].fPtIndex == seg->fPtIndex) { SkASSERT(seg[-1].fType == seg->fType); startT = seg[-1].getScalarT(); } } SkASSERT(seg->getScalarT() > startT); SkASSERT(distance >= startD); SkASSERT(seg->fDistance > startD); *t = startT + (seg->getScalarT() - startT) * (distance - startD) / (seg->fDistance - startD); return seg; } bool SkPathMeasure::getPosTan(SkScalar distance, SkPoint* pos, SkVector* tangent) { SkScalar length = this->getLength(); // call this to force computing it int count = fSegments.count(); if (count == 0 || length == 0 || SkScalarIsNaN(distance)) { return false; } // pin the distance to a legal range if (distance < 0) { distance = 0; } else if (distance > length) { distance = length; } SkScalar t; const Segment* seg = this->distanceToSegment(distance, &t); if (SkScalarIsNaN(t)) { return false; } compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, t, pos, tangent); return true; } bool SkPathMeasure::getMatrix(SkScalar distance, SkMatrix* matrix, MatrixFlags flags) { SkPoint position; SkVector tangent; if (this->getPosTan(distance, &position, &tangent)) { if (matrix) { if (flags & kGetTangent_MatrixFlag) { matrix->setSinCos(tangent.fY, tangent.fX, 0, 0); } else { matrix->reset(); } if (flags & kGetPosition_MatrixFlag) { matrix->postTranslate(position.fX, position.fY); } } return true; } return false; } bool SkPathMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst, bool startWithMoveTo) { SkASSERT(dst); SkScalar length = this->getLength(); // ensure we have built our segments if (startD < 0) { startD = 0; } if (stopD > length) { stopD = length; } if (!(startD <= stopD)) { // catch NaN values as well return false; } if (!fSegments.count()) { return false; } SkPoint p; SkScalar startT, stopT; const Segment* seg = this->distanceToSegment(startD, &startT); if (!SkScalarIsFinite(startT)) { return false; } const Segment* stopSeg = this->distanceToSegment(stopD, &stopT); if (!SkScalarIsFinite(stopT)) { return false; } SkASSERT(seg <= stopSeg); if (startWithMoveTo) { compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, startT, &p, nullptr); dst->moveTo(p); } if (seg->fPtIndex == stopSeg->fPtIndex) { SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, startT, stopT, dst); } else { do { SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, startT, SK_Scalar1, dst); seg = SkPathMeasure::NextSegment(seg); startT = 0; } while (seg->fPtIndex < stopSeg->fPtIndex); SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, 0, stopT, dst); } return true; } bool SkPathMeasure::isClosed() { (void)this->getLength(); // make sure we measure the current contour return fIsClosed; } /** Move to the next contour in the path. Return true if one exists, or false if we're done with the path. */ bool SkPathMeasure::nextContour() { (void)this->getLength(); // make sure we measure the current contour #if defined(IS_FUZZING_WITH_LIBFUZZER) if (fSubdivisionsMax < 0) { return false; } #endif fLength = -1; // now signal that we should build the next set of segments return this->getLength() > 0; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkPathMeasure::dump() { SkDebugf("pathmeas: length=%g, segs=%d\n", fLength, fSegments.count()); for (int i = 0; i < fSegments.count(); i++) { const Segment* seg = &fSegments[i]; SkDebugf("pathmeas: seg[%d] distance=%g, point=%d, t=%g, type=%d\n", i, seg->fDistance, seg->fPtIndex, seg->getScalarT(), seg->fType); } } #endif