/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMatrix44.h" #include <utility> static inline bool eq4(const SkMScalar* SK_RESTRICT a, const SkMScalar* SK_RESTRICT b) { return (a[0] == b[0]) & (a[1] == b[1]) & (a[2] == b[2]) & (a[3] == b[3]); } bool SkMatrix44::operator==(const SkMatrix44& other) const { if (this == &other) { return true; } if (this->isTriviallyIdentity() && other.isTriviallyIdentity()) { return true; } const SkMScalar* SK_RESTRICT a = &fMat[0][0]; const SkMScalar* SK_RESTRICT b = &other.fMat[0][0]; #if 0 for (int i = 0; i < 16; ++i) { if (a[i] != b[i]) { return false; } } return true; #else // to reduce branch instructions, we compare 4 at a time. // see bench/Matrix44Bench.cpp for test. if (!eq4(&a[0], &b[0])) { return false; } if (!eq4(&a[4], &b[4])) { return false; } if (!eq4(&a[8], &b[8])) { return false; } return eq4(&a[12], &b[12]); #endif } /////////////////////////////////////////////////////////////////////////////// int SkMatrix44::computeTypeMask() const { unsigned mask = 0; if (0 != perspX() || 0 != perspY() || 0 != perspZ() || 1 != fMat[3][3]) { return kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask; } if (0 != transX() || 0 != transY() || 0 != transZ()) { mask |= kTranslate_Mask; } if (1 != scaleX() || 1 != scaleY() || 1 != scaleZ()) { mask |= kScale_Mask; } if (0 != fMat[1][0] || 0 != fMat[0][1] || 0 != fMat[0][2] || 0 != fMat[2][0] || 0 != fMat[1][2] || 0 != fMat[2][1]) { mask |= kAffine_Mask; } return mask; } /////////////////////////////////////////////////////////////////////////////// void SkMatrix44::asColMajorf(float dst[]) const { const SkMScalar* src = &fMat[0][0]; #ifdef SK_MSCALAR_IS_DOUBLE for (int i = 0; i < 16; ++i) { dst[i] = SkMScalarToFloat(src[i]); } #elif defined SK_MSCALAR_IS_FLOAT memcpy(dst, src, 16 * sizeof(float)); #endif } void SkMatrix44::as3x4RowMajorf(float dst[]) const { dst[0] = fMat[0][0]; dst[1] = fMat[1][0]; dst[2] = fMat[2][0]; dst[3] = fMat[3][0]; dst[4] = fMat[0][1]; dst[5] = fMat[1][1]; dst[6] = fMat[2][1]; dst[7] = fMat[3][1]; dst[8] = fMat[0][2]; dst[9] = fMat[1][2]; dst[10] = fMat[2][2]; dst[11] = fMat[3][2]; } void SkMatrix44::asColMajord(double dst[]) const { const SkMScalar* src = &fMat[0][0]; #ifdef SK_MSCALAR_IS_DOUBLE memcpy(dst, src, 16 * sizeof(double)); #elif defined SK_MSCALAR_IS_FLOAT for (int i = 0; i < 16; ++i) { dst[i] = SkMScalarToDouble(src[i]); } #endif } void SkMatrix44::asRowMajorf(float dst[]) const { const SkMScalar* src = &fMat[0][0]; for (int i = 0; i < 4; ++i) { dst[0] = SkMScalarToFloat(src[0]); dst[4] = SkMScalarToFloat(src[1]); dst[8] = SkMScalarToFloat(src[2]); dst[12] = SkMScalarToFloat(src[3]); src += 4; dst += 1; } } void SkMatrix44::asRowMajord(double dst[]) const { const SkMScalar* src = &fMat[0][0]; for (int i = 0; i < 4; ++i) { dst[0] = SkMScalarToDouble(src[0]); dst[4] = SkMScalarToDouble(src[1]); dst[8] = SkMScalarToDouble(src[2]); dst[12] = SkMScalarToDouble(src[3]); src += 4; dst += 1; } } void SkMatrix44::setColMajorf(const float src[]) { SkMScalar* dst = &fMat[0][0]; #ifdef SK_MSCALAR_IS_DOUBLE for (int i = 0; i < 16; ++i) { dst[i] = SkMScalarToFloat(src[i]); } #elif defined SK_MSCALAR_IS_FLOAT memcpy(dst, src, 16 * sizeof(float)); #endif this->dirtyTypeMask(); } void SkMatrix44::setColMajord(const double src[]) { SkMScalar* dst = &fMat[0][0]; #ifdef SK_MSCALAR_IS_DOUBLE memcpy(dst, src, 16 * sizeof(double)); #elif defined SK_MSCALAR_IS_FLOAT for (int i = 0; i < 16; ++i) { dst[i] = SkDoubleToMScalar(src[i]); } #endif this->dirtyTypeMask(); } void SkMatrix44::setRowMajorf(const float src[]) { SkMScalar* dst = &fMat[0][0]; for (int i = 0; i < 4; ++i) { dst[0] = SkMScalarToFloat(src[0]); dst[4] = SkMScalarToFloat(src[1]); dst[8] = SkMScalarToFloat(src[2]); dst[12] = SkMScalarToFloat(src[3]); src += 4; dst += 1; } this->dirtyTypeMask(); } void SkMatrix44::setRowMajord(const double src[]) { SkMScalar* dst = &fMat[0][0]; for (int i = 0; i < 4; ++i) { dst[0] = SkDoubleToMScalar(src[0]); dst[4] = SkDoubleToMScalar(src[1]); dst[8] = SkDoubleToMScalar(src[2]); dst[12] = SkDoubleToMScalar(src[3]); src += 4; dst += 1; } this->dirtyTypeMask(); } /////////////////////////////////////////////////////////////////////////////// const SkMatrix44& SkMatrix44::I() { static constexpr SkMatrix44 gIdentity44(kIdentity_Constructor); return gIdentity44; } void SkMatrix44::setIdentity() { fMat[0][0] = 1; fMat[0][1] = 0; fMat[0][2] = 0; fMat[0][3] = 0; fMat[1][0] = 0; fMat[1][1] = 1; fMat[1][2] = 0; fMat[1][3] = 0; fMat[2][0] = 0; fMat[2][1] = 0; fMat[2][2] = 1; fMat[2][3] = 0; fMat[3][0] = 0; fMat[3][1] = 0; fMat[3][2] = 0; fMat[3][3] = 1; this->setTypeMask(kIdentity_Mask); } void SkMatrix44::set3x3(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20, SkMScalar m_01, SkMScalar m_11, SkMScalar m_21, SkMScalar m_02, SkMScalar m_12, SkMScalar m_22) { fMat[0][0] = m_00; fMat[0][1] = m_10; fMat[0][2] = m_20; fMat[0][3] = 0; fMat[1][0] = m_01; fMat[1][1] = m_11; fMat[1][2] = m_21; fMat[1][3] = 0; fMat[2][0] = m_02; fMat[2][1] = m_12; fMat[2][2] = m_22; fMat[2][3] = 0; fMat[3][0] = 0; fMat[3][1] = 0; fMat[3][2] = 0; fMat[3][3] = 1; this->dirtyTypeMask(); } void SkMatrix44::set3x3RowMajorf(const float src[]) { fMat[0][0] = src[0]; fMat[0][1] = src[3]; fMat[0][2] = src[6]; fMat[0][3] = 0; fMat[1][0] = src[1]; fMat[1][1] = src[4]; fMat[1][2] = src[7]; fMat[1][3] = 0; fMat[2][0] = src[2]; fMat[2][1] = src[5]; fMat[2][2] = src[8]; fMat[2][3] = 0; fMat[3][0] = 0; fMat[3][1] = 0; fMat[3][2] = 0; fMat[3][3] = 1; this->dirtyTypeMask(); } void SkMatrix44::set3x4RowMajorf(const float src[]) { fMat[0][0] = src[0]; fMat[1][0] = src[1]; fMat[2][0] = src[2]; fMat[3][0] = src[3]; fMat[0][1] = src[4]; fMat[1][1] = src[5]; fMat[2][1] = src[6]; fMat[3][1] = src[7]; fMat[0][2] = src[8]; fMat[1][2] = src[9]; fMat[2][2] = src[10]; fMat[3][2] = src[11]; fMat[0][3] = 0; fMat[1][3] = 0; fMat[2][3] = 0; fMat[3][3] = 1; this->dirtyTypeMask(); } /////////////////////////////////////////////////////////////////////////////// void SkMatrix44::setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { this->setIdentity(); if (!dx && !dy && !dz) { return; } fMat[3][0] = dx; fMat[3][1] = dy; fMat[3][2] = dz; this->setTypeMask(kTranslate_Mask); } void SkMatrix44::preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { if (!dx && !dy && !dz) { return; } for (int i = 0; i < 4; ++i) { fMat[3][i] = fMat[0][i] * dx + fMat[1][i] * dy + fMat[2][i] * dz + fMat[3][i]; } this->dirtyTypeMask(); } void SkMatrix44::postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { if (!dx && !dy && !dz) { return; } if (this->getType() & kPerspective_Mask) { for (int i = 0; i < 4; ++i) { fMat[i][0] += fMat[i][3] * dx; fMat[i][1] += fMat[i][3] * dy; fMat[i][2] += fMat[i][3] * dz; } } else { fMat[3][0] += dx; fMat[3][1] += dy; fMat[3][2] += dz; this->dirtyTypeMask(); } } /////////////////////////////////////////////////////////////////////////////// void SkMatrix44::setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { this->setIdentity(); if (1 == sx && 1 == sy && 1 == sz) { return; } fMat[0][0] = sx; fMat[1][1] = sy; fMat[2][2] = sz; this->setTypeMask(kScale_Mask); } void SkMatrix44::preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { if (1 == sx && 1 == sy && 1 == sz) { return; } // The implementation matrix * pureScale can be shortcut // by knowing that pureScale components effectively scale // the columns of the original matrix. for (int i = 0; i < 4; i++) { fMat[0][i] *= sx; fMat[1][i] *= sy; fMat[2][i] *= sz; } this->dirtyTypeMask(); } void SkMatrix44::postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { if (1 == sx && 1 == sy && 1 == sz) { return; } for (int i = 0; i < 4; i++) { fMat[i][0] *= sx; fMat[i][1] *= sy; fMat[i][2] *= sz; } this->dirtyTypeMask(); } /////////////////////////////////////////////////////////////////////////////// void SkMatrix44::setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z, SkMScalar radians) { double len2 = (double)x * x + (double)y * y + (double)z * z; if (1 != len2) { if (0 == len2) { this->setIdentity(); return; } double scale = 1 / sqrt(len2); x = SkDoubleToMScalar(x * scale); y = SkDoubleToMScalar(y * scale); z = SkDoubleToMScalar(z * scale); } this->setRotateAboutUnit(x, y, z, radians); } void SkMatrix44::setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z, SkMScalar radians) { double c = cos(radians); double s = sin(radians); double C = 1 - c; double xs = x * s; double ys = y * s; double zs = z * s; double xC = x * C; double yC = y * C; double zC = z * C; double xyC = x * yC; double yzC = y * zC; double zxC = z * xC; // if you're looking at wikipedia, remember that we're column major. this->set3x3(SkDoubleToMScalar(x * xC + c), // scale x SkDoubleToMScalar(xyC + zs), // skew x SkDoubleToMScalar(zxC - ys), // trans x SkDoubleToMScalar(xyC - zs), // skew y SkDoubleToMScalar(y * yC + c), // scale y SkDoubleToMScalar(yzC + xs), // trans y SkDoubleToMScalar(zxC + ys), // persp x SkDoubleToMScalar(yzC - xs), // persp y SkDoubleToMScalar(z * zC + c)); // persp 2 } /////////////////////////////////////////////////////////////////////////////// static bool bits_isonly(int value, int mask) { return 0 == (value & ~mask); } void SkMatrix44::setConcat(const SkMatrix44& a, const SkMatrix44& b) { const SkMatrix44::TypeMask a_mask = a.getType(); const SkMatrix44::TypeMask b_mask = b.getType(); if (kIdentity_Mask == a_mask) { *this = b; return; } if (kIdentity_Mask == b_mask) { *this = a; return; } bool useStorage = (this == &a || this == &b); SkMScalar storage[16]; SkMScalar* result = useStorage ? storage : &fMat[0][0]; // Both matrices are at most scale+translate if (bits_isonly(a_mask | b_mask, kScale_Mask | kTranslate_Mask)) { result[0] = a.fMat[0][0] * b.fMat[0][0]; result[1] = result[2] = result[3] = result[4] = 0; result[5] = a.fMat[1][1] * b.fMat[1][1]; result[6] = result[7] = result[8] = result[9] = 0; result[10] = a.fMat[2][2] * b.fMat[2][2]; result[11] = 0; result[12] = a.fMat[0][0] * b.fMat[3][0] + a.fMat[3][0]; result[13] = a.fMat[1][1] * b.fMat[3][1] + a.fMat[3][1]; result[14] = a.fMat[2][2] * b.fMat[3][2] + a.fMat[3][2]; result[15] = 1; } else { for (int j = 0; j < 4; j++) { for (int i = 0; i < 4; i++) { double value = 0; for (int k = 0; k < 4; k++) { value += SkMScalarToDouble(a.fMat[k][i]) * b.fMat[j][k]; } *result++ = SkDoubleToMScalar(value); } } } if (useStorage) { memcpy(fMat, storage, sizeof(storage)); } this->dirtyTypeMask(); } /////////////////////////////////////////////////////////////////////////////// /** We always perform the calculation in doubles, to avoid prematurely losing precision along the way. This relies on the compiler automatically promoting our SkMScalar values to double (if needed). */ double SkMatrix44::determinant() const { if (this->isIdentity()) { return 1; } if (this->isScaleTranslate()) { return fMat[0][0] * fMat[1][1] * fMat[2][2] * fMat[3][3]; } double a00 = fMat[0][0]; double a01 = fMat[0][1]; double a02 = fMat[0][2]; double a03 = fMat[0][3]; double a10 = fMat[1][0]; double a11 = fMat[1][1]; double a12 = fMat[1][2]; double a13 = fMat[1][3]; double a20 = fMat[2][0]; double a21 = fMat[2][1]; double a22 = fMat[2][2]; double a23 = fMat[2][3]; double a30 = fMat[3][0]; double a31 = fMat[3][1]; double a32 = fMat[3][2]; double a33 = fMat[3][3]; double b00 = a00 * a11 - a01 * a10; double b01 = a00 * a12 - a02 * a10; double b02 = a00 * a13 - a03 * a10; double b03 = a01 * a12 - a02 * a11; double b04 = a01 * a13 - a03 * a11; double b05 = a02 * a13 - a03 * a12; double b06 = a20 * a31 - a21 * a30; double b07 = a20 * a32 - a22 * a30; double b08 = a20 * a33 - a23 * a30; double b09 = a21 * a32 - a22 * a31; double b10 = a21 * a33 - a23 * a31; double b11 = a22 * a33 - a23 * a32; // Calculate the determinant return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; } /////////////////////////////////////////////////////////////////////////////// static bool is_matrix_finite(const SkMatrix44& matrix) { SkMScalar accumulator = 0; for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { accumulator *= matrix.get(row, col); } } return accumulator == 0; } bool SkMatrix44::invert(SkMatrix44* storage) const { if (this->isIdentity()) { if (storage) { storage->setIdentity(); } return true; } if (this->isTranslate()) { if (storage) { storage->setTranslate(-fMat[3][0], -fMat[3][1], -fMat[3][2]); } return true; } SkMatrix44 tmp; // Use storage if it's available and distinct from this matrix. SkMatrix44* inverse = (storage && storage != this) ? storage : &tmp; if (this->isScaleTranslate()) { if (0 == fMat[0][0] * fMat[1][1] * fMat[2][2]) { return false; } double invXScale = 1 / fMat[0][0]; double invYScale = 1 / fMat[1][1]; double invZScale = 1 / fMat[2][2]; inverse->fMat[0][0] = SkDoubleToMScalar(invXScale); inverse->fMat[0][1] = 0; inverse->fMat[0][2] = 0; inverse->fMat[0][3] = 0; inverse->fMat[1][0] = 0; inverse->fMat[1][1] = SkDoubleToMScalar(invYScale); inverse->fMat[1][2] = 0; inverse->fMat[1][3] = 0; inverse->fMat[2][0] = 0; inverse->fMat[2][1] = 0; inverse->fMat[2][2] = SkDoubleToMScalar(invZScale); inverse->fMat[2][3] = 0; inverse->fMat[3][0] = SkDoubleToMScalar(-fMat[3][0] * invXScale); inverse->fMat[3][1] = SkDoubleToMScalar(-fMat[3][1] * invYScale); inverse->fMat[3][2] = SkDoubleToMScalar(-fMat[3][2] * invZScale); inverse->fMat[3][3] = 1; inverse->setTypeMask(this->getType()); if (!is_matrix_finite(*inverse)) { return false; } if (storage && inverse != storage) { *storage = *inverse; } return true; } double a00 = fMat[0][0]; double a01 = fMat[0][1]; double a02 = fMat[0][2]; double a03 = fMat[0][3]; double a10 = fMat[1][0]; double a11 = fMat[1][1]; double a12 = fMat[1][2]; double a13 = fMat[1][3]; double a20 = fMat[2][0]; double a21 = fMat[2][1]; double a22 = fMat[2][2]; double a23 = fMat[2][3]; double a30 = fMat[3][0]; double a31 = fMat[3][1]; double a32 = fMat[3][2]; double a33 = fMat[3][3]; if (!(this->getType() & kPerspective_Mask)) { // If we know the matrix has no perspective, then the perspective // component is (0, 0, 0, 1). We can use this information to save a lot // of arithmetic that would otherwise be spent to compute the inverse // of a general matrix. SkASSERT(a03 == 0); SkASSERT(a13 == 0); SkASSERT(a23 == 0); SkASSERT(a33 == 1); double b00 = a00 * a11 - a01 * a10; double b01 = a00 * a12 - a02 * a10; double b03 = a01 * a12 - a02 * a11; double b06 = a20 * a31 - a21 * a30; double b07 = a20 * a32 - a22 * a30; double b08 = a20; double b09 = a21 * a32 - a22 * a31; double b10 = a21; double b11 = a22; // Calculate the determinant double det = b00 * b11 - b01 * b10 + b03 * b08; double invdet = sk_ieee_double_divide(1.0, det); // If det is zero, we want to return false. However, we also want to return false // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are // handled by checking that 1/det is finite. if (!sk_float_isfinite(sk_double_to_float(invdet))) { return false; } b00 *= invdet; b01 *= invdet; b03 *= invdet; b06 *= invdet; b07 *= invdet; b08 *= invdet; b09 *= invdet; b10 *= invdet; b11 *= invdet; inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10); inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11); inverse->fMat[0][2] = SkDoubleToMScalar(b03); inverse->fMat[0][3] = 0; inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11); inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08); inverse->fMat[1][2] = SkDoubleToMScalar(-b01); inverse->fMat[1][3] = 0; inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08); inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10); inverse->fMat[2][2] = SkDoubleToMScalar(b00); inverse->fMat[2][3] = 0; inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06); inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06); inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00); inverse->fMat[3][3] = 1; inverse->setTypeMask(this->getType()); if (!is_matrix_finite(*inverse)) { return false; } if (storage && inverse != storage) { *storage = *inverse; } return true; } double b00 = a00 * a11 - a01 * a10; double b01 = a00 * a12 - a02 * a10; double b02 = a00 * a13 - a03 * a10; double b03 = a01 * a12 - a02 * a11; double b04 = a01 * a13 - a03 * a11; double b05 = a02 * a13 - a03 * a12; double b06 = a20 * a31 - a21 * a30; double b07 = a20 * a32 - a22 * a30; double b08 = a20 * a33 - a23 * a30; double b09 = a21 * a32 - a22 * a31; double b10 = a21 * a33 - a23 * a31; double b11 = a22 * a33 - a23 * a32; // Calculate the determinant double det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; double invdet = sk_ieee_double_divide(1.0, det); // If det is zero, we want to return false. However, we also want to return false // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are // handled by checking that 1/det is finite. if (!sk_float_isfinite(sk_double_to_float(invdet))) { return false; } b00 *= invdet; b01 *= invdet; b02 *= invdet; b03 *= invdet; b04 *= invdet; b05 *= invdet; b06 *= invdet; b07 *= invdet; b08 *= invdet; b09 *= invdet; b10 *= invdet; b11 *= invdet; inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10 + a13 * b09); inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11 - a03 * b09); inverse->fMat[0][2] = SkDoubleToMScalar(a31 * b05 - a32 * b04 + a33 * b03); inverse->fMat[0][3] = SkDoubleToMScalar(a22 * b04 - a21 * b05 - a23 * b03); inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11 - a13 * b07); inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08 + a03 * b07); inverse->fMat[1][2] = SkDoubleToMScalar(a32 * b02 - a30 * b05 - a33 * b01); inverse->fMat[1][3] = SkDoubleToMScalar(a20 * b05 - a22 * b02 + a23 * b01); inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08 + a13 * b06); inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10 - a03 * b06); inverse->fMat[2][2] = SkDoubleToMScalar(a30 * b04 - a31 * b02 + a33 * b00); inverse->fMat[2][3] = SkDoubleToMScalar(a21 * b02 - a20 * b04 - a23 * b00); inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06); inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06); inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00); inverse->fMat[3][3] = SkDoubleToMScalar(a20 * b03 - a21 * b01 + a22 * b00); inverse->dirtyTypeMask(); inverse->setTypeMask(this->getType()); if (!is_matrix_finite(*inverse)) { return false; } if (storage && inverse != storage) { *storage = *inverse; } return true; } /////////////////////////////////////////////////////////////////////////////// void SkMatrix44::transpose() { using std::swap; swap(fMat[0][1], fMat[1][0]); swap(fMat[0][2], fMat[2][0]); swap(fMat[0][3], fMat[3][0]); swap(fMat[1][2], fMat[2][1]); swap(fMat[1][3], fMat[3][1]); swap(fMat[2][3], fMat[3][2]); if (!this->isTriviallyIdentity()) { this->dirtyTypeMask(); } } /////////////////////////////////////////////////////////////////////////////// void SkMatrix44::mapScalars(const SkScalar src[4], SkScalar dst[4]) const { SkScalar storage[4]; SkScalar* result = (src == dst) ? storage : dst; for (int i = 0; i < 4; i++) { SkMScalar value = 0; for (int j = 0; j < 4; j++) { value += fMat[j][i] * src[j]; } result[i] = SkMScalarToScalar(value); } if (storage == result) { memcpy(dst, storage, sizeof(storage)); } } #ifdef SK_MSCALAR_IS_DOUBLE void SkMatrix44::mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const { SkMScalar storage[4]; SkMScalar* result = (src == dst) ? storage : dst; for (int i = 0; i < 4; i++) { SkMScalar value = 0; for (int j = 0; j < 4; j++) { value += fMat[j][i] * src[j]; } result[i] = value; } if (storage == result) { memcpy(dst, storage, sizeof(storage)); } } #endif typedef void (*Map2Procf)(const SkMScalar mat[][4], const float src2[], int count, float dst4[]); typedef void (*Map2Procd)(const SkMScalar mat[][4], const double src2[], int count, double dst4[]); static void map2_if(const SkMScalar mat[][4], const float* SK_RESTRICT src2, int count, float* SK_RESTRICT dst4) { for (int i = 0; i < count; ++i) { dst4[0] = src2[0]; dst4[1] = src2[1]; dst4[2] = 0; dst4[3] = 1; src2 += 2; dst4 += 4; } } static void map2_id(const SkMScalar mat[][4], const double* SK_RESTRICT src2, int count, double* SK_RESTRICT dst4) { for (int i = 0; i < count; ++i) { dst4[0] = src2[0]; dst4[1] = src2[1]; dst4[2] = 0; dst4[3] = 1; src2 += 2; dst4 += 4; } } static void map2_tf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, int count, float* SK_RESTRICT dst4) { const float mat30 = SkMScalarToFloat(mat[3][0]); const float mat31 = SkMScalarToFloat(mat[3][1]); const float mat32 = SkMScalarToFloat(mat[3][2]); for (int n = 0; n < count; ++n) { dst4[0] = src2[0] + mat30; dst4[1] = src2[1] + mat31; dst4[2] = mat32; dst4[3] = 1; src2 += 2; dst4 += 4; } } static void map2_td(const SkMScalar mat[][4], const double* SK_RESTRICT src2, int count, double* SK_RESTRICT dst4) { for (int n = 0; n < count; ++n) { dst4[0] = src2[0] + mat[3][0]; dst4[1] = src2[1] + mat[3][1]; dst4[2] = mat[3][2]; dst4[3] = 1; src2 += 2; dst4 += 4; } } static void map2_sf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, int count, float* SK_RESTRICT dst4) { const float mat32 = SkMScalarToFloat(mat[3][2]); for (int n = 0; n < count; ++n) { dst4[0] = SkMScalarToFloat(mat[0][0] * src2[0] + mat[3][0]); dst4[1] = SkMScalarToFloat(mat[1][1] * src2[1] + mat[3][1]); dst4[2] = mat32; dst4[3] = 1; src2 += 2; dst4 += 4; } } static void map2_sd(const SkMScalar mat[][4], const double* SK_RESTRICT src2, int count, double* SK_RESTRICT dst4) { for (int n = 0; n < count; ++n) { dst4[0] = mat[0][0] * src2[0] + mat[3][0]; dst4[1] = mat[1][1] * src2[1] + mat[3][1]; dst4[2] = mat[3][2]; dst4[3] = 1; src2 += 2; dst4 += 4; } } static void map2_af(const SkMScalar mat[][4], const float* SK_RESTRICT src2, int count, float* SK_RESTRICT dst4) { SkMScalar r; for (int n = 0; n < count; ++n) { SkMScalar sx = SkFloatToMScalar(src2[0]); SkMScalar sy = SkFloatToMScalar(src2[1]); r = mat[0][0] * sx + mat[1][0] * sy + mat[3][0]; dst4[0] = SkMScalarToFloat(r); r = mat[0][1] * sx + mat[1][1] * sy + mat[3][1]; dst4[1] = SkMScalarToFloat(r); r = mat[0][2] * sx + mat[1][2] * sy + mat[3][2]; dst4[2] = SkMScalarToFloat(r); dst4[3] = 1; src2 += 2; dst4 += 4; } } static void map2_ad(const SkMScalar mat[][4], const double* SK_RESTRICT src2, int count, double* SK_RESTRICT dst4) { for (int n = 0; n < count; ++n) { double sx = src2[0]; double sy = src2[1]; dst4[0] = mat[0][0] * sx + mat[1][0] * sy + mat[3][0]; dst4[1] = mat[0][1] * sx + mat[1][1] * sy + mat[3][1]; dst4[2] = mat[0][2] * sx + mat[1][2] * sy + mat[3][2]; dst4[3] = 1; src2 += 2; dst4 += 4; } } static void map2_pf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, int count, float* SK_RESTRICT dst4) { SkMScalar r; for (int n = 0; n < count; ++n) { SkMScalar sx = SkFloatToMScalar(src2[0]); SkMScalar sy = SkFloatToMScalar(src2[1]); for (int i = 0; i < 4; i++) { r = mat[0][i] * sx + mat[1][i] * sy + mat[3][i]; dst4[i] = SkMScalarToFloat(r); } src2 += 2; dst4 += 4; } } static void map2_pd(const SkMScalar mat[][4], const double* SK_RESTRICT src2, int count, double* SK_RESTRICT dst4) { for (int n = 0; n < count; ++n) { double sx = src2[0]; double sy = src2[1]; for (int i = 0; i < 4; i++) { dst4[i] = mat[0][i] * sx + mat[1][i] * sy + mat[3][i]; } src2 += 2; dst4 += 4; } } void SkMatrix44::map2(const float src2[], int count, float dst4[]) const { static const Map2Procf gProc[] = { map2_if, map2_tf, map2_sf, map2_sf, map2_af, map2_af, map2_af, map2_af }; TypeMask mask = this->getType(); Map2Procf proc = (mask & kPerspective_Mask) ? map2_pf : gProc[mask]; proc(fMat, src2, count, dst4); } void SkMatrix44::map2(const double src2[], int count, double dst4[]) const { static const Map2Procd gProc[] = { map2_id, map2_td, map2_sd, map2_sd, map2_ad, map2_ad, map2_ad, map2_ad }; TypeMask mask = this->getType(); Map2Procd proc = (mask & kPerspective_Mask) ? map2_pd : gProc[mask]; proc(fMat, src2, count, dst4); } bool SkMatrix44::preserves2dAxisAlignment (SkMScalar epsilon) const { // Can't check (mask & kPerspective_Mask) because Z isn't relevant here. if (0 != perspX() || 0 != perspY()) return false; // A matrix with two non-zeroish values in any of the upper right // rows or columns will skew. If only one value in each row or // column is non-zeroish, we get a scale plus perhaps a 90-degree // rotation. int col0 = 0; int col1 = 0; int row0 = 0; int row1 = 0; // Must test against epsilon, not 0, because we can get values // around 6e-17 in the matrix that "should" be 0. if (SkMScalarAbs(fMat[0][0]) > epsilon) { col0++; row0++; } if (SkMScalarAbs(fMat[0][1]) > epsilon) { col1++; row0++; } if (SkMScalarAbs(fMat[1][0]) > epsilon) { col0++; row1++; } if (SkMScalarAbs(fMat[1][1]) > epsilon) { col1++; row1++; } if (col0 > 1 || col1 > 1 || row0 > 1 || row1 > 1) { return false; } return true; } /////////////////////////////////////////////////////////////////////////////// void SkMatrix44::dump() const { static const char* format = "|%g %g %g %g|\n" "|%g %g %g %g|\n" "|%g %g %g %g|\n" "|%g %g %g %g|\n"; SkDebugf(format, fMat[0][0], fMat[1][0], fMat[2][0], fMat[3][0], fMat[0][1], fMat[1][1], fMat[2][1], fMat[3][1], fMat[0][2], fMat[1][2], fMat[2][2], fMat[3][2], fMat[0][3], fMat[1][3], fMat[2][3], fMat[3][3]); } /////////////////////////////////////////////////////////////////////////////// static void initFromMatrix(SkMScalar dst[4][4], const SkMatrix& src) { dst[0][0] = SkScalarToMScalar(src[SkMatrix::kMScaleX]); dst[1][0] = SkScalarToMScalar(src[SkMatrix::kMSkewX]); dst[2][0] = 0; dst[3][0] = SkScalarToMScalar(src[SkMatrix::kMTransX]); dst[0][1] = SkScalarToMScalar(src[SkMatrix::kMSkewY]); dst[1][1] = SkScalarToMScalar(src[SkMatrix::kMScaleY]); dst[2][1] = 0; dst[3][1] = SkScalarToMScalar(src[SkMatrix::kMTransY]); dst[0][2] = 0; dst[1][2] = 0; dst[2][2] = 1; dst[3][2] = 0; dst[0][3] = SkScalarToMScalar(src[SkMatrix::kMPersp0]); dst[1][3] = SkScalarToMScalar(src[SkMatrix::kMPersp1]); dst[2][3] = 0; dst[3][3] = SkScalarToMScalar(src[SkMatrix::kMPersp2]); } SkMatrix44::SkMatrix44(const SkMatrix& src) { this->operator=(src); } SkMatrix44& SkMatrix44::operator=(const SkMatrix& src) { initFromMatrix(fMat, src); if (src.isIdentity()) { this->setTypeMask(kIdentity_Mask); } else { this->dirtyTypeMask(); } return *this; } SkMatrix44::operator SkMatrix() const { SkMatrix dst; dst[SkMatrix::kMScaleX] = SkMScalarToScalar(fMat[0][0]); dst[SkMatrix::kMSkewX] = SkMScalarToScalar(fMat[1][0]); dst[SkMatrix::kMTransX] = SkMScalarToScalar(fMat[3][0]); dst[SkMatrix::kMSkewY] = SkMScalarToScalar(fMat[0][1]); dst[SkMatrix::kMScaleY] = SkMScalarToScalar(fMat[1][1]); dst[SkMatrix::kMTransY] = SkMScalarToScalar(fMat[3][1]); dst[SkMatrix::kMPersp0] = SkMScalarToScalar(fMat[0][3]); dst[SkMatrix::kMPersp1] = SkMScalarToScalar(fMat[1][3]); dst[SkMatrix::kMPersp2] = SkMScalarToScalar(fMat[3][3]); return dst; }