/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDevice.h" #include "SkColorFilter.h" #include "SkDraw.h" #include "SkDrawable.h" #include "SkGlyphRun.h" #include "SkImageFilter.h" #include "SkImageFilterCache.h" #include "SkImagePriv.h" #include "SkImage_Base.h" #include "SkLatticeIter.h" #include "SkLocalMatrixShader.h" #include "SkMakeUnique.h" #include "SkMatrixPriv.h" #include "SkPatchUtils.h" #include "SkPathMeasure.h" #include "SkPathPriv.h" #include "SkRSXform.h" #include "SkRasterClip.h" #include "SkShader.h" #include "SkSpecialImage.h" #include "SkTLazy.h" #include "SkTextBlobPriv.h" #include "SkTo.h" #include "SkUtils.h" #include "SkVertices.h" SkBaseDevice::SkBaseDevice(const SkImageInfo& info, const SkSurfaceProps& surfaceProps) : fInfo(info) , fSurfaceProps(surfaceProps) { fOrigin = {0, 0}; fCTM.reset(); } void SkBaseDevice::setOrigin(const SkMatrix& globalCTM, int x, int y) { fOrigin.set(x, y); fCTM = globalCTM; fCTM.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); } void SkBaseDevice::setGlobalCTM(const SkMatrix& ctm) { fCTM = ctm; if (fOrigin.fX | fOrigin.fY) { fCTM.postTranslate(-SkIntToScalar(fOrigin.fX), -SkIntToScalar(fOrigin.fY)); } } bool SkBaseDevice::clipIsWideOpen() const { if (kRect_ClipType == this->onGetClipType()) { SkRegion rgn; this->onAsRgnClip(&rgn); SkASSERT(rgn.isRect()); return rgn.getBounds() == SkIRect::MakeWH(this->width(), this->height()); } else { return false; } } SkPixelGeometry SkBaseDevice::CreateInfo::AdjustGeometry(const SkImageInfo& info, TileUsage tileUsage, SkPixelGeometry geo, bool preserveLCDText) { switch (tileUsage) { case kPossible_TileUsage: // (we think) for compatibility with old clients, we assume this layer can support LCD // even though they may not have marked it as opaque... seems like we should update // our callers (reed/robertphilips). break; case kNever_TileUsage: if (!preserveLCDText) { geo = kUnknown_SkPixelGeometry; } break; } return geo; } static inline bool is_int(float x) { return x == (float) sk_float_round2int(x); } void SkBaseDevice::drawRegion(const SkRegion& region, const SkPaint& paint) { const SkMatrix& ctm = this->ctm(); bool isNonTranslate = ctm.getType() & ~(SkMatrix::kTranslate_Mask); bool complexPaint = paint.getStyle() != SkPaint::kFill_Style || paint.getMaskFilter() || paint.getPathEffect(); bool antiAlias = paint.isAntiAlias() && (!is_int(ctm.getTranslateX()) || !is_int(ctm.getTranslateY())); if (isNonTranslate || complexPaint || antiAlias) { SkPath path; region.getBoundaryPath(&path); path.setIsVolatile(true); return this->drawPath(path, paint, true); } SkRegion::Iterator it(region); while (!it.done()) { this->drawRect(SkRect::Make(it.rect()), paint); it.next(); } } void SkBaseDevice::drawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { SkPath path; bool isFillNoPathEffect = SkPaint::kFill_Style == paint.getStyle() && !paint.getPathEffect(); SkPathPriv::CreateDrawArcPath(&path, oval, startAngle, sweepAngle, useCenter, isFillNoPathEffect); this->drawPath(path, paint); } void SkBaseDevice::drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { SkPath path; path.addRRect(outer); path.addRRect(inner); path.setFillType(SkPath::kEvenOdd_FillType); path.setIsVolatile(true); this->drawPath(path, paint, true); } void SkBaseDevice::drawEdgeAARect(const SkRect& r, SkCanvas::QuadAAFlags aa, SkColor color, SkBlendMode mode) { SkPaint paint; paint.setColor(color); paint.setBlendMode(mode); paint.setAntiAlias(aa == SkCanvas::kAll_QuadAAFlags); this->drawRect(r, paint); } void SkBaseDevice::drawPatch(const SkPoint cubics[12], const SkColor colors[4], const SkPoint texCoords[4], SkBlendMode bmode, const SkPaint& paint) { SkISize lod = SkPatchUtils::GetLevelOfDetail(cubics, &this->ctm()); auto vertices = SkPatchUtils::MakeVertices(cubics, colors, texCoords, lod.width(), lod.height(), this->imageInfo().colorSpace()); if (vertices) { this->drawVertices(vertices.get(), nullptr, 0, bmode, paint); } } void SkBaseDevice::drawImage(const SkImage* image, SkScalar x, SkScalar y, const SkPaint& paint) { SkBitmap bm; if (as_IB(image)->getROPixels(&bm)) { this->drawBitmap(bm, x, y, paint); } } void SkBaseDevice::drawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { SkBitmap bm; if (as_IB(image)->getROPixels(&bm)) { this->drawBitmapRect(bm, src, dst, paint, constraint); } } void SkBaseDevice::drawImageNine(const SkImage* image, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { SkLatticeIter iter(image->width(), image->height(), center, dst); SkRect srcR, dstR; while (iter.next(&srcR, &dstR)) { this->drawImageRect(image, &srcR, dstR, paint, SkCanvas::kStrict_SrcRectConstraint); } } void SkBaseDevice::drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { SkLatticeIter iter(bitmap.width(), bitmap.height(), center, dst); SkRect srcR, dstR; while (iter.next(&srcR, &dstR)) { this->drawBitmapRect(bitmap, &srcR, dstR, paint, SkCanvas::kStrict_SrcRectConstraint); } } void SkBaseDevice::drawImageLattice(const SkImage* image, const SkCanvas::Lattice& lattice, const SkRect& dst, const SkPaint& paint) { SkLatticeIter iter(lattice, dst); SkRect srcR, dstR; SkColor c; bool isFixedColor = false; const SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); while (iter.next(&srcR, &dstR, &isFixedColor, &c)) { if (isFixedColor || (srcR.width() <= 1.0f && srcR.height() <= 1.0f && image->readPixels(info, &c, 4, srcR.fLeft, srcR.fTop))) { // Fast draw with drawRect, if this is a patch containing a single color // or if this is a patch containing a single pixel. if (0 != c || !paint.isSrcOver()) { SkPaint paintCopy(paint); int alpha = SkAlphaMul(SkColorGetA(c), SkAlpha255To256(paint.getAlpha())); paintCopy.setColor(SkColorSetA(c, alpha)); this->drawRect(dstR, paintCopy); } } else { this->drawImageRect(image, &srcR, dstR, paint, SkCanvas::kStrict_SrcRectConstraint); } } } void SkBaseDevice::drawImageSet(const SkCanvas::ImageSetEntry images[], int count, SkFilterQuality filterQuality, SkBlendMode mode) { SkPaint paint; paint.setFilterQuality(SkTPin(filterQuality, kNone_SkFilterQuality, kLow_SkFilterQuality)); paint.setBlendMode(mode); for (int i = 0; i < count; ++i) { // TODO: Handle per-edge AA. Right now this mirrors the SkiaRenderer component of Chrome // which turns off antialiasing unless all four edges should be antialiased. This avoids // seaming in tiled composited layers. paint.setAntiAlias(images[i].fAAFlags == SkCanvas::kAll_QuadAAFlags); paint.setAlpha(SkToUInt(SkTClamp(SkScalarRoundToInt(images[i].fAlpha * 255), 0, 255))); this->drawImageRect(images[i].fImage.get(), &images[i].fSrcRect, images[i].fDstRect, paint, SkCanvas::kFast_SrcRectConstraint); } } void SkBaseDevice::drawBitmapLattice(const SkBitmap& bitmap, const SkCanvas::Lattice& lattice, const SkRect& dst, const SkPaint& paint) { SkLatticeIter iter(lattice, dst); SkRect srcR, dstR; while (iter.next(&srcR, &dstR)) { this->drawBitmapRect(bitmap, &srcR, dstR, paint, SkCanvas::kStrict_SrcRectConstraint); } } static SkPoint* quad_to_tris(SkPoint tris[6], const SkPoint quad[4]) { tris[0] = quad[0]; tris[1] = quad[1]; tris[2] = quad[2]; tris[3] = quad[0]; tris[4] = quad[2]; tris[5] = quad[3]; return tris + 6; } void SkBaseDevice::drawAtlas(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[], const SkColor colors[], int quadCount, SkBlendMode mode, const SkPaint& paint) { const int triCount = quadCount << 1; const int vertexCount = triCount * 3; uint32_t flags = SkVertices::kHasTexCoords_BuilderFlag; if (colors) { flags |= SkVertices::kHasColors_BuilderFlag; } SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, 0, flags); SkPoint* vPos = builder.positions(); SkPoint* vTex = builder.texCoords(); SkColor* vCol = builder.colors(); for (int i = 0; i < quadCount; ++i) { SkPoint tmp[4]; xform[i].toQuad(tex[i].width(), tex[i].height(), tmp); vPos = quad_to_tris(vPos, tmp); tex[i].toQuad(tmp); vTex = quad_to_tris(vTex, tmp); if (colors) { sk_memset32(vCol, colors[i], 6); vCol += 6; } } SkPaint p(paint); p.setShader(atlas->makeShader()); this->drawVertices(builder.detach().get(), nullptr, 0, mode, p); } /////////////////////////////////////////////////////////////////////////////////////////////////// void SkBaseDevice::drawDrawable(SkDrawable* drawable, const SkMatrix* matrix, SkCanvas* canvas) { drawable->draw(canvas, matrix); } /////////////////////////////////////////////////////////////////////////////////////////////////// void SkBaseDevice::drawSpecial(SkSpecialImage*, int x, int y, const SkPaint&, SkImage*, const SkMatrix&) {} sk_sp<SkSpecialImage> SkBaseDevice::makeSpecial(const SkBitmap&) { return nullptr; } sk_sp<SkSpecialImage> SkBaseDevice::makeSpecial(const SkImage*) { return nullptr; } sk_sp<SkSpecialImage> SkBaseDevice::snapSpecial() { return nullptr; } /////////////////////////////////////////////////////////////////////////////////////////////////// bool SkBaseDevice::readPixels(const SkPixmap& pm, int x, int y) { return this->onReadPixels(pm, x, y); } bool SkBaseDevice::writePixels(const SkPixmap& pm, int x, int y) { return this->onWritePixels(pm, x, y); } bool SkBaseDevice::onWritePixels(const SkPixmap&, int, int) { return false; } bool SkBaseDevice::onReadPixels(const SkPixmap&, int x, int y) { return false; } bool SkBaseDevice::accessPixels(SkPixmap* pmap) { SkPixmap tempStorage; if (nullptr == pmap) { pmap = &tempStorage; } return this->onAccessPixels(pmap); } bool SkBaseDevice::peekPixels(SkPixmap* pmap) { SkPixmap tempStorage; if (nullptr == pmap) { pmap = &tempStorage; } return this->onPeekPixels(pmap); } ////////////////////////////////////////////////////////////////////////////////////////// #include "SkUtils.h" void SkBaseDevice::drawGlyphRunRSXform(const SkFont& font, const SkGlyphID glyphs[], const SkRSXform xform[], int count, SkPoint origin, const SkPaint& paint) { const SkMatrix originalCTM = this->ctm(); if (!originalCTM.isFinite() || !SkScalarIsFinite(font.getSize()) || !SkScalarIsFinite(font.getScaleX()) || !SkScalarIsFinite(font.getSkewX())) { return; } SkPoint sharedPos{0, 0}; // we're at the origin SkGlyphID glyphID; SkGlyphRun glyphRun{ font, SkSpan<const SkPoint>{&sharedPos, 1}, SkSpan<const SkGlyphID>{&glyphID, 1}, SkSpan<const char>{}, SkSpan<const uint32_t>{} }; for (int i = 0; i < count; i++) { glyphID = glyphs[i]; // now "glyphRun" is pointing at the current glyphID SkMatrix ctm; ctm.setRSXform(xform[i]).postTranslate(origin.fX, origin.fY); // We want to rotate each glyph by the rsxform, but we don't want to rotate "space" // (i.e. the shader that cares about the ctm) so we have to undo our little ctm trick // with a localmatrixshader so that the shader draws as if there was no change to the ctm. SkPaint transformingPaint{paint}; auto shader = transformingPaint.getShader(); if (shader) { SkMatrix inverse; if (ctm.invert(&inverse)) { transformingPaint.setShader(shader->makeWithLocalMatrix(inverse)); } else { transformingPaint.setShader(nullptr); // can't handle this xform } } ctm.setConcat(originalCTM, ctm); this->setCTM(ctm); this->drawGlyphRunList(SkGlyphRunList{glyphRun, transformingPaint}); } this->setCTM(originalCTM); } ////////////////////////////////////////////////////////////////////////////////////////// sk_sp<SkSurface> SkBaseDevice::makeSurface(SkImageInfo const&, SkSurfaceProps const&) { return nullptr; } sk_sp<SkSpecialImage> SkBaseDevice::snapBackImage(const SkIRect&) { return nullptr; } ////////////////////////////////////////////////////////////////////////////////////////// void SkBaseDevice::LogDrawScaleFactor(const SkMatrix& matrix, SkFilterQuality filterQuality) { #if SK_HISTOGRAMS_ENABLED enum ScaleFactor { kUpscale_ScaleFactor, kNoScale_ScaleFactor, kDownscale_ScaleFactor, kLargeDownscale_ScaleFactor, kLast_ScaleFactor = kLargeDownscale_ScaleFactor }; float rawScaleFactor = matrix.getMinScale(); ScaleFactor scaleFactor; if (rawScaleFactor < 0.5f) { scaleFactor = kLargeDownscale_ScaleFactor; } else if (rawScaleFactor < 1.0f) { scaleFactor = kDownscale_ScaleFactor; } else if (rawScaleFactor > 1.0f) { scaleFactor = kUpscale_ScaleFactor; } else { scaleFactor = kNoScale_ScaleFactor; } switch (filterQuality) { case kNone_SkFilterQuality: SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.NoneFilterQuality", scaleFactor, kLast_ScaleFactor + 1); break; case kLow_SkFilterQuality: SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.LowFilterQuality", scaleFactor, kLast_ScaleFactor + 1); break; case kMedium_SkFilterQuality: SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.MediumFilterQuality", scaleFactor, kLast_ScaleFactor + 1); break; case kHigh_SkFilterQuality: SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.HighFilterQuality", scaleFactor, kLast_ScaleFactor + 1); break; } // Also log filter quality independent scale factor. SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.AnyFilterQuality", scaleFactor, kLast_ScaleFactor + 1); // Also log an overall histogram of filter quality. SK_HISTOGRAM_ENUMERATION("FilterQuality", filterQuality, kLast_SkFilterQuality + 1); #endif }