/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #include "Test.h" #include "GrClip.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpuResource.h" #include "GrMemoryPool.h" #include "GrProxyProvider.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrResourceProvider.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "ops/GrFillRectOp.h" #include "ops/GrMeshDrawOp.h" #include "TestUtils.h" #include <atomic> #include <random> namespace { class TestOp : public GrMeshDrawOp { public: DEFINE_OP_CLASS_ID static std::unique_ptr<GrDrawOp> Make(GrContext* context, std::unique_ptr<GrFragmentProcessor> fp) { GrOpMemoryPool* pool = context->priv().opMemoryPool(); return pool->allocate<TestOp>(std::move(fp)); } const char* name() const override { return "TestOp"; } void visitProxies(const VisitProxyFunc& func, VisitorType) const override { fProcessors.visitProxies(func); } FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrFSAAType fsaaType, GrClampType clampType) override { static constexpr GrProcessorAnalysisColor kUnknownColor; SkPMColor4f overrideColor; return fProcessors.finalize( kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, &GrUserStencilSettings::kUnused, fsaaType, caps, clampType, &overrideColor); } private: friend class ::GrOpMemoryPool; // for ctor TestOp(std::unique_ptr<GrFragmentProcessor> fp) : INHERITED(ClassID()), fProcessors(std::move(fp)) { this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsZeroArea::kNo); } void onPrepareDraws(Target* target) override { return; } void onExecute(GrOpFlushState*, const SkRect&) override { return; } GrProcessorSet fProcessors; typedef GrMeshDrawOp INHERITED; }; /** * FP used to test ref/IO counts on owned GrGpuResources. Can also be a parent FP to test counts * of resources owned by child FPs. */ class TestFP : public GrFragmentProcessor { public: static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) { return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child))); } static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<sk_sp<GrTextureProxy>>& proxies, const SkTArray<sk_sp<GrGpuBuffer>>& buffers) { return std::unique_ptr<GrFragmentProcessor>(new TestFP(proxies, buffers)); } const char* name() const override { return "test"; } void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { static std::atomic<int32_t> nextKey{0}; b->add32(nextKey++); } std::unique_ptr<GrFragmentProcessor> clone() const override { return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this)); } private: TestFP(const SkTArray<sk_sp<GrTextureProxy>>& proxies, const SkTArray<sk_sp<GrGpuBuffer>>& buffers) : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) { for (const auto& proxy : proxies) { fSamplers.emplace_back(proxy); } this->setTextureSamplerCnt(fSamplers.count()); } TestFP(std::unique_ptr<GrFragmentProcessor> child) : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) { this->registerChildProcessor(std::move(child)); } explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()), fSamplers(4) { for (int i = 0; i < that.fSamplers.count(); ++i) { fSamplers.emplace_back(that.fSamplers[i]); } for (int i = 0; i < that.numChildProcessors(); ++i) { this->registerChildProcessor(that.childProcessor(i).clone()); } this->setTextureSamplerCnt(fSamplers.count()); } virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { class TestGLSLFP : public GrGLSLFragmentProcessor { public: TestGLSLFP() {} void emitCode(EmitArgs& args) override { GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor); } private: }; return new TestGLSLFP(); } bool onIsEqual(const GrFragmentProcessor&) const override { return false; } const TextureSampler& onTextureSampler(int i) const override { return fSamplers[i]; } GrTAllocator<TextureSampler> fSamplers; typedef GrFragmentProcessor INHERITED; }; } template <typename T> inline void testingOnly_getIORefCnts(const T* resource, int* refCnt, int* readCnt, int* writeCnt) { *refCnt = resource->fRefCnt; *readCnt = resource->fPendingReads; *writeCnt = resource->fPendingWrites; } void testingOnly_getIORefCnts(GrTextureProxy* proxy, int* refCnt, int* readCnt, int* writeCnt) { *refCnt = proxy->getBackingRefCnt_TestOnly(); *readCnt = proxy->getPendingReadCnt_TestOnly(); *writeCnt = proxy->getPendingWriteCnt_TestOnly(); } DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrProxyProvider* proxyProvider = context->priv().proxyProvider(); GrSurfaceDesc desc; desc.fWidth = 10; desc.fHeight = 10; desc.fConfig = kRGBA_8888_GrPixelConfig; const GrBackendFormat format = context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); for (bool makeClone : {false, true}) { for (int parentCnt = 0; parentCnt < 2; parentCnt++) { sk_sp<GrRenderTargetContext> renderTargetContext( context->priv().makeDeferredRenderTargetContext( format, SkBackingFit::kApprox, 1, 1, kRGBA_8888_GrPixelConfig, nullptr)); { sk_sp<GrTextureProxy> proxy1 = proxyProvider->createProxy( format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, SkBudgeted::kYes); sk_sp<GrTextureProxy> proxy2 = proxyProvider->createProxy( format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, SkBudgeted::kYes); sk_sp<GrTextureProxy> proxy3 = proxyProvider->createProxy( format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, SkBudgeted::kYes); sk_sp<GrTextureProxy> proxy4 = proxyProvider->createProxy( format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, SkBudgeted::kYes); { SkTArray<sk_sp<GrTextureProxy>> proxies; SkTArray<sk_sp<GrGpuBuffer>> buffers; proxies.push_back(proxy1); auto fp = TestFP::Make(std::move(proxies), std::move(buffers)); for (int i = 0; i < parentCnt; ++i) { fp = TestFP::Make(std::move(fp)); } std::unique_ptr<GrFragmentProcessor> clone; if (makeClone) { clone = fp->clone(); } std::unique_ptr<GrDrawOp> op(TestOp::Make(context, std::move(fp))); renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); if (clone) { op = TestOp::Make(context, std::move(clone)); renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); } } int refCnt, readCnt, writeCnt; testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt); // IO counts should be double if there is a clone of the FP. int ioRefMul = makeClone ? 2 : 1; REPORTER_ASSERT(reporter, -1 == refCnt); REPORTER_ASSERT(reporter, ioRefMul * 1 == readCnt); REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt); context->flush(); testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt); REPORTER_ASSERT(reporter, 1 == refCnt); REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt); REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt); } } } } // This test uses the random GrFragmentProcessor test factory, which relies on static initializers. #if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS #include "SkCommandLineFlags.h" DEFINE_bool(randomProcessorTest, false, "Use non-deterministic seed for random processor tests?"); DEFINE_uint32(processorSeed, 0, "Use specific seed for processor tests. Overridden by " \ "--randomProcessorTest."); #if GR_TEST_UTILS static GrColor input_texel_color(int i, int j, SkScalar delta) { // Delta must be less than 0.5 to prevent over/underflow issues with the input color SkASSERT(delta <= 0.5); SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF), (uint8_t)(j & 0xFF), (uint8_t)((i + j) & 0xFF), (uint8_t)((2 * j - i) & 0xFF)); SkColor4f color4f = SkColor4f::FromColor(color); for (int i = 0; i < 4; i++) { if (color4f[i] > 0.5) { color4f[i] -= delta; } else { color4f[i] += delta; } } return color4f.premul().toBytes_RGBA(); } void test_draw_op(GrContext* context, GrRenderTargetContext* rtc, std::unique_ptr<GrFragmentProcessor> fp, sk_sp<GrTextureProxy> inputDataProxy) { GrPaint paint; paint.addColorTextureProcessor(std::move(inputDataProxy), SkMatrix::I()); paint.addColorFragmentProcessor(std::move(fp)); paint.setPorterDuffXPFactory(SkBlendMode::kSrc); auto op = GrFillRectOp::Make(context, std::move(paint), GrAAType::kNone, SkMatrix::I(), SkRect::MakeWH(rtc->width(), rtc->height())); rtc->addDrawOp(GrNoClip(), std::move(op)); } // This assumes that the output buffer will be the same size as inputDataProxy void render_fp(GrContext* context, GrRenderTargetContext* rtc, GrFragmentProcessor* fp, sk_sp<GrTextureProxy> inputDataProxy, GrColor* buffer) { int width = inputDataProxy->width(); int height = inputDataProxy->height(); // test_draw_op needs to take ownership of an FP, so give it a clone that it can own test_draw_op(context, rtc, fp->clone(), inputDataProxy); memset(buffer, 0x0, sizeof(GrColor) * width * height); rtc->readPixels(SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType), buffer, 0, 0, 0); } /** Initializes the two test texture proxies that are available to the FP test factories. */ bool init_test_textures(GrProxyProvider* proxyProvider, SkRandom* random, sk_sp<GrTextureProxy> proxies[2]) { static const int kTestTextureSize = 256; { // Put premul data into the RGBA texture that the test FPs can optionally use. std::unique_ptr<GrColor[]> rgbaData(new GrColor[kTestTextureSize * kTestTextureSize]); for (int y = 0; y < kTestTextureSize; ++y) { for (int x = 0; x < kTestTextureSize; ++x) { rgbaData[kTestTextureSize * y + x] = input_texel_color( random->nextULessThan(256), random->nextULessThan(256), 0.0f); } } SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkPixmap pixmap(ii, rgbaData.get(), ii.minRowBytes()); sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); proxies[0] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); } { // Put random values into the alpha texture that the test FPs can optionally use. std::unique_ptr<uint8_t[]> alphaData(new uint8_t[kTestTextureSize * kTestTextureSize]); for (int y = 0; y < kTestTextureSize; ++y) { for (int x = 0; x < kTestTextureSize; ++x) { alphaData[kTestTextureSize * y + x] = random->nextULessThan(256); } } SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, kAlpha_8_SkColorType, kPremul_SkAlphaType); SkPixmap pixmap(ii, alphaData.get(), ii.minRowBytes()); sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); proxies[1] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); } return proxies[0] && proxies[1]; } // Creates a texture of premul colors used as the output of the fragment processor that precedes // the fragment processor under test. Color values are those provided by input_texel_color(). sk_sp<GrTextureProxy> make_input_texture(GrProxyProvider* proxyProvider, int width, int height, SkScalar delta) { std::unique_ptr<GrColor[]> data(new GrColor[width * height]); for (int y = 0; y < width; ++y) { for (int x = 0; x < height; ++x) { data.get()[width * y + x] = input_texel_color(x, y, delta); } } SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkPixmap pixmap(ii, data.get(), ii.minRowBytes()); sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); return proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kExact); } bool log_surface_context(sk_sp<GrSurfaceContext> src, SkString* dst) { SkImageInfo ii = SkImageInfo::Make(src->width(), src->height(), kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap bm; SkAssertResult(bm.tryAllocPixels(ii)); SkAssertResult(src->readPixels(ii, bm.getPixels(), bm.rowBytes(), 0, 0)); return bitmap_to_base64_data_uri(bm, dst); } bool log_surface_proxy(GrContext* context, sk_sp<GrSurfaceProxy> src, SkString* dst) { sk_sp<GrSurfaceContext> sContext(context->priv().makeWrappedSurfaceContext(src)); return log_surface_context(sContext, dst); } bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) { // With the loss of precision of rendering into 32-bit color, then estimating the FP's output // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01 // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little // too unforgiving). static constexpr SkScalar kTolerance = 0.01f; for (int i = 0; i < 4; i++) { if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) { return false; } } return true; } int modulation_index(int channelIndex, bool alphaModulation) { return alphaModulation ? 3 : channelIndex; } // Given three input colors (color preceding the FP being tested), and the output of the FP, this // ensures that the out1 = fp * in1.a, out2 = fp * in2.a, and out3 = fp * in3.a, where fp is the // pre-modulated color that should not be changing across frames (FP's state doesn't change). // // When alphaModulation is false, this tests the very similar conditions that out1 = fp * in1, // etc. using per-channel modulation instead of modulation by just the input alpha channel. // - This estimates the pre-modulated fp color from one of the input/output pairs and confirms the // conditions hold for the other two pairs. bool legal_modulation(const GrColor& in1, const GrColor& in2, const GrColor& in3, const GrColor& out1, const GrColor& out2, const GrColor& out3, bool alphaModulation) { // Convert to floating point, which is the number space the FP operates in (more or less) SkPMColor4f in1f = SkPMColor4f::FromBytes_RGBA(in1); SkPMColor4f in2f = SkPMColor4f::FromBytes_RGBA(in2); SkPMColor4f in3f = SkPMColor4f::FromBytes_RGBA(in3); SkPMColor4f out1f = SkPMColor4f::FromBytes_RGBA(out1); SkPMColor4f out2f = SkPMColor4f::FromBytes_RGBA(out2); SkPMColor4f out3f = SkPMColor4f::FromBytes_RGBA(out3); // Reconstruct the output of the FP before the shader modulated its color with the input value. // When the original input is very small, it may cause the final output color to round // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that // will then have a guaranteed larger channel value (since the offset will be added to it). SkPMColor4f fpPreModulation; for (int i = 0; i < 4; i++) { int modulationIndex = modulation_index(i, alphaModulation); if (in1f[modulationIndex] < 0.2f) { // Use the stepped frame fpPreModulation[i] = out2f[i] / in2f[modulationIndex]; } else { fpPreModulation[i] = out1f[i] / in1f[modulationIndex]; } } // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each // of the transformed input colors. SkPMColor4f expected1 = alphaModulation ? (fpPreModulation * in1f.fA) : (fpPreModulation * in1f); SkPMColor4f expected2 = alphaModulation ? (fpPreModulation * in2f.fA) : (fpPreModulation * in2f); SkPMColor4f expected3 = alphaModulation ? (fpPreModulation * in3f.fA) : (fpPreModulation * in3f); return fuzzy_color_equals(out1f, expected1) && fuzzy_color_equals(out2f, expected2) && fuzzy_color_equals(out3f, expected3); } DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrProxyProvider* proxyProvider = context->priv().proxyProvider(); auto resourceProvider = context->priv().resourceProvider(); using FPFactory = GrFragmentProcessorTestFactory; uint32_t seed = FLAGS_processorSeed; if (FLAGS_randomProcessorTest) { std::random_device rd; seed = rd(); } // If a non-deterministic bot fails this test, check the output to see what seed it used, then // use --processorSeed <seed> (without --randomProcessorTest) to reproduce. SkRandom random(seed); const GrBackendFormat format = context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); // Make the destination context for the test. static constexpr int kRenderSize = 256; sk_sp<GrRenderTargetContext> rtc = context->priv().makeDeferredRenderTargetContext( format, SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig, nullptr); sk_sp<GrTextureProxy> proxies[2]; if (!init_test_textures(proxyProvider, &random, proxies)) { ERRORF(reporter, "Could not create test textures"); return; } GrProcessorTestData testData(&random, context, rtc.get(), proxies); // Coverage optimization uses three frames with a linearly transformed input texture. The first // frame has no offset, second frames add .2 and .4, which should then be present as a fixed // difference between the frame outputs if the FP is properly following the modulation // requirements of the coverage optimization. static constexpr SkScalar kInputDelta = 0.2f; auto inputTexture1 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f); auto inputTexture2 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, kInputDelta); auto inputTexture3 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 2*kInputDelta); // Encoded images are very verbose and this tests many potential images, so only export the // first failure (subsequent failures have a reasonable chance of being related). bool loggedFirstFailure = false; bool loggedFirstWarning = false; // Storage for the three frames required for coverage compatibility optimization. Each frame // uses the correspondingly numbered inputTextureX. std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]); std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]); std::unique_ptr<GrColor[]> readData3(new GrColor[kRenderSize * kRenderSize]); // Because processor factories configure themselves in random ways, this is not exhaustive. for (int i = 0; i < FPFactory::Count(); ++i) { int timesToInvokeFactory = 5; // Increase the number of attempts if the FP has child FPs since optimizations likely depend // on child optimizations being present. std::unique_ptr<GrFragmentProcessor> fp = FPFactory::MakeIdx(i, &testData); for (int j = 0; j < fp->numChildProcessors(); ++j) { // This value made a reasonable trade off between time and coverage when this test was // written. timesToInvokeFactory *= FPFactory::Count() / 2; } #if defined(__MSVC_RUNTIME_CHECKS) // This test is infuriatingly slow with MSVC runtime checks enabled timesToInvokeFactory = 1; #endif for (int j = 0; j < timesToInvokeFactory; ++j) { fp = FPFactory::MakeIdx(i, &testData); if (!fp->instantiate(resourceProvider)) { continue; } if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() && !fp->compatibleWithCoverageAsAlpha()) { continue; } if (fp->compatibleWithCoverageAsAlpha()) { // 2nd and 3rd frames are only used when checking coverage optimization render_fp(context, rtc.get(), fp.get(), inputTexture2, readData2.get()); render_fp(context, rtc.get(), fp.get(), inputTexture3, readData3.get()); } // Draw base frame last so that rtc holds the original FP behavior if we need to // dump the image to the log. render_fp(context, rtc.get(), fp.get(), inputTexture1, readData1.get()); if (0) { // Useful to see what FPs are being tested. SkString children; for (int c = 0; c < fp->numChildProcessors(); ++c) { if (!c) { children.append("("); } children.append(fp->childProcessor(c).name()); children.append(c == fp->numChildProcessors() - 1 ? ")" : ", "); } SkDebugf("%s %s\n", fp->name(), children.c_str()); } // This test has a history of being flaky on a number of devices. If an FP is logically // violating the optimizations, it's reasonable to expect it to violate requirements on // a large number of pixels in the image. Sporadic pixel violations are more indicative // of device errors and represents a separate problem. #if defined(SK_BUILD_FOR_SKQP) static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP #else static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image #endif int failedPixelCount = 0; // Collect first optimization failure message, to be output later as a warning or an // error depending on whether the rendering "passed" or failed. SkString coverageMessage; SkString opaqueMessage; SkString constMessage; for (int y = 0; y < kRenderSize; ++y) { for (int x = 0; x < kRenderSize; ++x) { bool passing = true; GrColor input = input_texel_color(x, y, 0.0f); GrColor output = readData1.get()[y * kRenderSize + x]; if (fp->compatibleWithCoverageAsAlpha()) { GrColor i2 = input_texel_color(x, y, kInputDelta); GrColor i3 = input_texel_color(x, y, 2 * kInputDelta); GrColor o2 = readData2.get()[y * kRenderSize + x]; GrColor o3 = readData3.get()[y * kRenderSize + x]; // A compatible processor is allowed to modulate either the input color or // just the input alpha. bool legalAlphaModulation = legal_modulation(input, i2, i3, output, o2, o3, /* alpha */ true); bool legalColorModulation = legal_modulation(input, i2, i3, output, o2, o3, /* alpha */ false); if (!legalColorModulation && !legalAlphaModulation) { passing = false; if (coverageMessage.isEmpty()) { coverageMessage.printf("\"Modulating\" processor %s did not match " "alpha-modulation nor color-modulation rules. " "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).", fp->name(), input, output, x, y); } } } SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input); SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output); SkPMColor4f expected4f; if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) { float rDiff = fabsf(output4f.fR - expected4f.fR); float gDiff = fabsf(output4f.fG - expected4f.fG); float bDiff = fabsf(output4f.fB - expected4f.fB); float aDiff = fabsf(output4f.fA - expected4f.fA); static constexpr float kTol = 4 / 255.f; if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) { if (constMessage.isEmpty()) { passing = false; constMessage.printf("Processor %s claimed output for const input " "doesn't match actual output. Error: %f, Tolerance: %f, " "input: (%f, %f, %f, %f), actual: (%f, %f, %f, %f), " "expected(%f, %f, %f, %f)", fp->name(), SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))), kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA, output4f.fR, output4f.fG, output4f.fB, output4f.fA, expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA); } } } if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) { passing = false; if (opaqueMessage.isEmpty()) { opaqueMessage.printf("Processor %s claimed opaqueness is preserved but " "it is not. Input: 0x%08x, Output: 0x%08x.", fp->name(), input, output); } } if (!passing) { // Regardless of how many optimizations the pixel violates, count it as a // single bad pixel. failedPixelCount++; } } } // Finished analyzing the entire image, see if the number of pixel failures meets the // threshold for an FP violating the optimization requirements. if (failedPixelCount > kMaxAcceptableFailedPixels) { ERRORF(reporter, "Processor violated %d of %d pixels, seed: 0x%08x, processor: %s" ", first failing pixel details are below:", failedPixelCount, kRenderSize * kRenderSize, seed, fp->dumpInfo().c_str()); // Print first failing pixel's details. if (!coverageMessage.isEmpty()) { ERRORF(reporter, coverageMessage.c_str()); } if (!constMessage.isEmpty()) { ERRORF(reporter, constMessage.c_str()); } if (!opaqueMessage.isEmpty()) { ERRORF(reporter, opaqueMessage.c_str()); } if (!loggedFirstFailure) { // Print with ERRORF to make sure the encoded image is output SkString input; log_surface_proxy(context, inputTexture1, &input); SkString output; log_surface_context(rtc, &output); ERRORF(reporter, "Input image: %s\n\n" "===========================================================\n\n" "Output image: %s\n", input.c_str(), output.c_str()); loggedFirstFailure = true; } } else if(failedPixelCount > 0) { // Don't trigger an error, but don't just hide the failures either. INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: " "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize, seed, fp->dumpInfo().c_str()); if (!coverageMessage.isEmpty()) { INFOF(reporter, coverageMessage.c_str()); } if (!constMessage.isEmpty()) { INFOF(reporter, constMessage.c_str()); } if (!opaqueMessage.isEmpty()) { INFOF(reporter, opaqueMessage.c_str()); } if (!loggedFirstWarning) { SkString input; log_surface_proxy(context, inputTexture1, &input); SkString output; log_surface_context(rtc, &output); INFOF(reporter, "Input image: %s\n\n" "===========================================================\n\n" "Output image: %s\n", input.c_str(), output.c_str()); loggedFirstWarning = true; } } } } } // Tests that fragment processors returned by GrFragmentProcessor::clone() are equivalent to their // progenitors. DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); GrProxyProvider* proxyProvider = context->priv().proxyProvider(); auto resourceProvider = context->priv().resourceProvider(); SkRandom random; const GrBackendFormat format = context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); // Make the destination context for the test. static constexpr int kRenderSize = 1024; sk_sp<GrRenderTargetContext> rtc = context->priv().makeDeferredRenderTargetContext( format, SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig, nullptr); sk_sp<GrTextureProxy> proxies[2]; if (!init_test_textures(proxyProvider, &random, proxies)) { ERRORF(reporter, "Could not create test textures"); return; } GrProcessorTestData testData(&random, context, rtc.get(), proxies); auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f); std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]); std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]); auto readInfo = SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); // Because processor factories configure themselves in random ways, this is not exhaustive. for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) { static constexpr int kTimesToInvokeFactory = 10; for (int j = 0; j < kTimesToInvokeFactory; ++j) { auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &testData); auto clone = fp->clone(); if (!clone) { ERRORF(reporter, "Clone of processor %s failed.", fp->name()); continue; } const char* name = fp->name(); if (!fp->instantiate(resourceProvider) || !clone->instantiate(resourceProvider)) { continue; } REPORTER_ASSERT(reporter, !strcmp(fp->name(), clone->name())); REPORTER_ASSERT(reporter, fp->compatibleWithCoverageAsAlpha() == clone->compatibleWithCoverageAsAlpha()); REPORTER_ASSERT(reporter, fp->isEqual(*clone)); REPORTER_ASSERT(reporter, fp->preservesOpaqueInput() == clone->preservesOpaqueInput()); REPORTER_ASSERT(reporter, fp->hasConstantOutputForConstantInput() == clone->hasConstantOutputForConstantInput()); REPORTER_ASSERT(reporter, fp->numChildProcessors() == clone->numChildProcessors()); REPORTER_ASSERT(reporter, fp->usesLocalCoords() == clone->usesLocalCoords()); // Draw with original and read back the results. render_fp(context, rtc.get(), fp.get(), inputTexture, readData1.get()); // Draw with clone and read back the results. render_fp(context, rtc.get(), clone.get(), inputTexture, readData2.get()); // Check that the results are the same. bool passing = true; for (int y = 0; y < kRenderSize && passing; ++y) { for (int x = 0; x < kRenderSize && passing; ++x) { int idx = y * kRenderSize + x; if (readData1[idx] != readData2[idx]) { ERRORF(reporter, "Processor %s made clone produced different output. " "Input color: 0x%08x, Original Output Color: 0x%08x, " "Clone Output Color: 0x%08x..", name, input_texel_color(x, y, 0.0f), readData1[idx], readData2[idx]); passing = false; } } } } } } #endif // GR_TEST_UTILS #endif // SK_ALLOW_STATIC_GLOBAL_INITIALIZERS