/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "GrBackendSemaphore.h" #include "GrClip.h" #include "GrContextPriv.h" #include "GrDefaultGeoProcFactory.h" #include "GrOnFlushResourceProvider.h" #include "GrProxyProvider.h" #include "GrQuad.h" #include "GrRenderTargetContextPriv.h" #include "GrResourceProvider.h" #include "GrTexture.h" #include "SkBitmap.h" #include "SkPointPriv.h" #include "effects/GrSimpleTextureEffect.h" #include "ops/GrSimpleMeshDrawOpHelper.h" namespace { // This is a simplified mesh drawing op that can be used in the atlas generation test. // Please see AtlasedRectOp below. class NonAARectOp : public GrMeshDrawOp { protected: using Helper = GrSimpleMeshDrawOpHelper; public: DEFINE_OP_CLASS_ID // This creates an instance of a simple non-AA solid color rect-drawing Op static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, GrPaint&& paint, const SkRect& r) { return Helper::FactoryHelper<NonAARectOp>(context, std::move(paint), r, nullptr, ClassID()); } // This creates an instance of a simple non-AA textured rect-drawing Op static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, GrPaint&& paint, const SkRect& r, const SkRect& local) { return Helper::FactoryHelper<NonAARectOp>(context, std::move(paint), r, &local, ClassID()); } const SkPMColor4f& color() const { return fColor; } NonAARectOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, const SkRect& r, const SkRect* localRect, int32_t classID) : INHERITED(classID) , fColor(color) , fHasLocalRect(SkToBool(localRect)) , fRect(r) , fHelper(helperArgs, GrAAType::kNone) { if (fHasLocalRect) { fLocalQuad = GrQuad(*localRect); } // Choose some conservative values for aa bloat and zero area. this->setBounds(r, HasAABloat::kYes, IsZeroArea::kYes); } const char* name() const override { return "NonAARectOp"; } void visitProxies(const VisitProxyFunc& func, VisitorType) const override { fHelper.visitProxies(func); } FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip*, GrFSAAType fsaaType, GrClampType clampType) override { // Set the color to unknown because the subclass may change the color later. GrProcessorAnalysisColor gpColor; gpColor.setToUnknown(); // We ignore the clip so pass this rather than the GrAppliedClip param. static GrAppliedClip kNoClip; return fHelper.finalizeProcessors( caps, &kNoClip, fsaaType, clampType, GrProcessorAnalysisCoverage::kNone, &gpColor); } protected: SkPMColor4f fColor; bool fHasLocalRect; GrQuad fLocalQuad; SkRect fRect; private: void onPrepareDraws(Target* target) override { using namespace GrDefaultGeoProcFactory; // The vertex attrib order is always pos, color, local coords. static const int kColorOffset = sizeof(SkPoint); static const int kLocalOffset = sizeof(SkPoint) + sizeof(GrColor); sk_sp<GrGeometryProcessor> gp = GrDefaultGeoProcFactory::Make(target->caps().shaderCaps(), Color::kPremulGrColorAttribute_Type, Coverage::kSolid_Type, fHasLocalRect ? LocalCoords::kHasExplicit_Type : LocalCoords::kUnused_Type, SkMatrix::I()); if (!gp) { SkDebugf("Couldn't create GrGeometryProcessor for GrAtlasedOp\n"); return; } size_t vertexStride = gp->vertexStride(); sk_sp<const GrBuffer> indexBuffer; int firstIndex; uint16_t* indices = target->makeIndexSpace(6, &indexBuffer, &firstIndex); if (!indices) { SkDebugf("Indices could not be allocated for GrAtlasedOp.\n"); return; } sk_sp<const GrBuffer> vertexBuffer; int firstVertex; void* vertices = target->makeVertexSpace(vertexStride, 4, &vertexBuffer, &firstVertex); if (!vertices) { SkDebugf("Vertices could not be allocated for GrAtlasedOp.\n"); return; } // Setup indices indices[0] = 0; indices[1] = 1; indices[2] = 2; indices[3] = 2; indices[4] = 1; indices[5] = 3; // Setup positions SkPoint* position = (SkPoint*) vertices; SkPointPriv::SetRectTriStrip(position, fRect, vertexStride); // Setup vertex colors GrColor* color = (GrColor*)((intptr_t)vertices + kColorOffset); for (int i = 0; i < 4; ++i) { *color = fColor.toBytes_RGBA(); color = (GrColor*)((intptr_t)color + vertexStride); } // Setup local coords if (fHasLocalRect) { SkPoint* coords = (SkPoint*)((intptr_t) vertices + kLocalOffset); for (int i = 0; i < 4; i++) { *coords = fLocalQuad.point(i); coords = (SkPoint*)((intptr_t) coords + vertexStride); } } GrMesh* mesh = target->allocMesh(GrPrimitiveType::kTriangles); mesh->setIndexed(indexBuffer, 6, firstIndex, 0, 3, GrPrimitiveRestart::kNo); mesh->setVertexData(vertexBuffer, firstVertex); target->recordDraw(std::move(gp), mesh); } void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { fHelper.executeDrawsAndUploads(this, flushState, chainBounds); } Helper fHelper; typedef GrMeshDrawOp INHERITED; }; } // anonymous namespace static constexpr SkRect kEmptyRect = SkRect::MakeEmpty(); namespace { /* * Atlased ops just draw themselves as textured rects with the texture pixels being * pulled out of the atlas. Their color is based on their ID. */ class AtlasedRectOp final : public NonAARectOp { public: DEFINE_OP_CLASS_ID ~AtlasedRectOp() override { fID = -1; } const char* name() const override { return "AtlasedRectOp"; } int id() const { return fID; } static std::unique_ptr<AtlasedRectOp> Make(GrContext* context, GrPaint&& paint, const SkRect& r, int id) { GrDrawOp* op = Helper::FactoryHelper<AtlasedRectOp>(context, std::move(paint), r, id).release(); return std::unique_ptr<AtlasedRectOp>(static_cast<AtlasedRectOp*>(op)); } // We set the initial color of the NonAARectOp based on the ID. // Note that we force creation of a NonAARectOp that has local coords in anticipation of // pulling from the atlas. AtlasedRectOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, const SkRect& r, int id) : INHERITED(helperArgs, SkPMColor4f::FromBytes_RGBA(kColors[id]), r, &kEmptyRect, ClassID()) , fID(id) , fNext(nullptr) { SkASSERT(fID < kMaxIDs); } void setColor(const SkPMColor4f& color) { fColor = color; } void setLocalRect(const SkRect& localRect) { SkASSERT(fHasLocalRect); // This should've been created to anticipate this fLocalQuad = GrQuad(localRect); } AtlasedRectOp* next() const { return fNext; } void setNext(AtlasedRectOp* next) { fNext = next; } private: static const int kMaxIDs = 9; static const GrColor kColors[kMaxIDs]; int fID; // The Atlased ops have an internal singly-linked list of ops that land in the same opList AtlasedRectOp* fNext; typedef NonAARectOp INHERITED; }; } // anonymous namespace const GrColor AtlasedRectOp::kColors[kMaxIDs] = { GrColorPackRGBA(255, 0, 0, 255), GrColorPackRGBA(0, 255, 0, 255), GrColorPackRGBA(0, 0, 255, 255), GrColorPackRGBA(0, 255, 255, 255), GrColorPackRGBA(255, 0, 255, 255), GrColorPackRGBA(255, 255, 0, 255), GrColorPackRGBA(0, 0, 0, 255), GrColorPackRGBA(128, 128, 128, 255), GrColorPackRGBA(255, 255, 255, 255) }; static const int kDrawnTileSize = 16; /* * Rather than performing any rect packing, this atlaser just lays out constant-sized * tiles in an Nx1 row */ static const int kAtlasTileSize = 2; /* * This class aggregates the op information required for atlasing */ class AtlasObject final : public GrOnFlushCallbackObject { public: AtlasObject() : fDone(false) { } ~AtlasObject() override { SkASSERT(fDone); } void markAsDone() { fDone = true; } // Insert the new op in an internal singly-linked list for 'opListID' void addOp(uint32_t opListID, AtlasedRectOp* op) { LinkedListHeader* header = nullptr; for (int i = 0; i < fOps.count(); ++i) { if (opListID == fOps[i].fID) { header = &(fOps[i]); } } if (!header) { fOps.push_back({opListID, nullptr}); header = &(fOps[fOps.count()-1]); } op->setNext(header->fHead); header->fHead = op; } int numOps() const { return fOps.count(); } // Get the fully lazy proxy that is backing the atlas. Its actual width isn't // known until flush time. sk_sp<GrTextureProxy> getAtlasProxy(GrProxyProvider* proxyProvider, const GrCaps* caps) { if (fAtlasProxy) { return fAtlasProxy; } const GrBackendFormat format = caps->getBackendFormatFromColorType(kRGBA_8888_SkColorType); fAtlasProxy = GrProxyProvider::MakeFullyLazyProxy( [](GrResourceProvider* resourceProvider) { if (!resourceProvider) { return sk_sp<GrTexture>(); } GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; // TODO: until partial flushes in MDB lands we're stuck having // all 9 atlas draws occur desc.fWidth = 9 /*this->numOps()*/ * kAtlasTileSize; desc.fHeight = kAtlasTileSize; desc.fConfig = kRGBA_8888_GrPixelConfig; return resourceProvider->createTexture(desc, SkBudgeted::kYes, GrResourceProvider::Flags::kNoPendingIO); }, format, GrProxyProvider::Renderable::kYes, kBottomLeft_GrSurfaceOrigin, kRGBA_8888_GrPixelConfig, *proxyProvider->caps()); return fAtlasProxy; } /* * This callback creates the atlas and updates the AtlasedRectOps to read from it */ void preFlush(GrOnFlushResourceProvider* resourceProvider, const uint32_t* opListIDs, int numOpListIDs, SkTArray<sk_sp<GrRenderTargetContext>>* results) override { SkASSERT(!results->count()); // Until MDB is landed we will most-likely only have one opList. SkTDArray<LinkedListHeader*> lists; for (int i = 0; i < numOpListIDs; ++i) { if (LinkedListHeader* list = this->getList(opListIDs[i])) { lists.push_back(list); } } if (!lists.count()) { return; // nothing to atlas } if (!resourceProvider->instatiateProxy(fAtlasProxy.get())) { return; } // At this point all the GrAtlasedOp's should have lined up to read from 'atlasDest' and // there should either be two writes to clear it or no writes. SkASSERT(9 == fAtlasProxy->getPendingReadCnt_TestOnly()); SkASSERT(2 == fAtlasProxy->getPendingWriteCnt_TestOnly() || 0 == fAtlasProxy->getPendingWriteCnt_TestOnly()); sk_sp<GrRenderTargetContext> rtc = resourceProvider->makeRenderTargetContext( fAtlasProxy, nullptr, nullptr); // clear the atlas rtc->clear(nullptr, SK_PMColor4fTRANSPARENT, GrRenderTargetContext::CanClearFullscreen::kYes); int blocksInAtlas = 0; for (int i = 0; i < lists.count(); ++i) { for (AtlasedRectOp* op = lists[i]->fHead; op; op = op->next()) { SkIRect r = SkIRect::MakeXYWH(blocksInAtlas*kAtlasTileSize, 0, kAtlasTileSize, kAtlasTileSize); // For now, we avoid the resource buffer issues and just use clears #if 1 rtc->clear(&r, op->color(), GrRenderTargetContext::CanClearFullscreen::kNo); #else GrPaint paint; paint.setColor4f(op->color()); std::unique_ptr<GrDrawOp> drawOp(NonAARectOp::Make(std::move(paint), SkRect::Make(r))); rtc->priv().testingOnly_addDrawOp(std::move(drawOp)); #endif blocksInAtlas++; // Set the atlased Op's color to white (so we know we're not using it for // the final draw). op->setColor(SK_PMColor4fWHITE); // Set the atlased Op's localRect to point to where it landed in the atlas op->setLocalRect(SkRect::Make(r)); } // We've updated all these ops and we certainly don't want to process them again this->clearOpsFor(lists[i]); } results->push_back(std::move(rtc)); } private: typedef struct { uint32_t fID; AtlasedRectOp* fHead; } LinkedListHeader; LinkedListHeader* getList(uint32_t opListID) { for (int i = 0; i < fOps.count(); ++i) { if (opListID == fOps[i].fID) { return &(fOps[i]); } } return nullptr; } void clearOpsFor(LinkedListHeader* header) { // The AtlasedRectOps have yet to execute (and this class doesn't own them) so just // forget about them in the laziest way possible. header->fHead = nullptr; header->fID = 0; // invalid opList ID } // Each opList containing AtlasedRectOps gets its own internal singly-linked list SkTDArray<LinkedListHeader> fOps; // The fully lazy proxy for the atlas sk_sp<GrTextureProxy> fAtlasProxy; // Set to true when the testing harness expects this object to be no longer used bool fDone; }; // This creates an off-screen rendertarget whose ops which eventually pull from the atlas. static sk_sp<GrTextureProxy> make_upstream_image(GrContext* context, AtlasObject* object, int start, sk_sp<GrTextureProxy> atlasProxy) { const GrBackendFormat format = context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); sk_sp<GrRenderTargetContext> rtc(context->priv().makeDeferredRenderTargetContext( format, SkBackingFit::kApprox, 3*kDrawnTileSize, kDrawnTileSize, kRGBA_8888_GrPixelConfig, nullptr)); rtc->clear(nullptr, { 1, 0, 0, 1 }, GrRenderTargetContext::CanClearFullscreen::kYes); for (int i = 0; i < 3; ++i) { SkRect r = SkRect::MakeXYWH(i*kDrawnTileSize, 0, kDrawnTileSize, kDrawnTileSize); auto fp = GrSimpleTextureEffect::Make(atlasProxy, SkMatrix::I()); GrPaint paint; paint.addColorFragmentProcessor(std::move(fp)); paint.setPorterDuffXPFactory(SkBlendMode::kSrc); std::unique_ptr<AtlasedRectOp> op(AtlasedRectOp::Make(context, std::move(paint), r, start + i)); AtlasedRectOp* sparePtr = op.get(); uint32_t opListID; rtc->priv().testingOnly_addDrawOp(GrNoClip(), std::move(op), [&opListID](GrOp* op, uint32_t id) { opListID = id; }); SkASSERT(SK_InvalidUniqueID != opListID); object->addOp(opListID, sparePtr); } return rtc->asTextureProxyRef(); } // Enable this if you want to debug the final draws w/o having the atlasCallback create the // atlas #if 0 #include "SkImageEncoder.h" #include "SkGrPriv.h" #include "sk_tool_utils.h" static void save_bm(const SkBitmap& bm, const char name[]) { bool result = sk_tool_utils::EncodeImageToFile(name, bm, SkEncodedImageFormat::kPNG, 100); SkASSERT(result); } sk_sp<GrTextureProxy> pre_create_atlas(GrContext* context) { SkBitmap bm; bm.allocN32Pixels(18, 2, true); bm.erase(SK_ColorRED, SkIRect::MakeXYWH(0, 0, 2, 2)); bm.erase(SK_ColorGREEN, SkIRect::MakeXYWH(2, 0, 2, 2)); bm.erase(SK_ColorBLUE, SkIRect::MakeXYWH(4, 0, 2, 2)); bm.erase(SK_ColorCYAN, SkIRect::MakeXYWH(6, 0, 2, 2)); bm.erase(SK_ColorMAGENTA, SkIRect::MakeXYWH(8, 0, 2, 2)); bm.erase(SK_ColorYELLOW, SkIRect::MakeXYWH(10, 0, 2, 2)); bm.erase(SK_ColorBLACK, SkIRect::MakeXYWH(12, 0, 2, 2)); bm.erase(SK_ColorGRAY, SkIRect::MakeXYWH(14, 0, 2, 2)); bm.erase(SK_ColorWHITE, SkIRect::MakeXYWH(16, 0, 2, 2)); #if 1 save_bm(bm, "atlas-fake.png"); #endif GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(bm.info()); desc.fFlags |= kRenderTarget_GrSurfaceFlag; sk_sp<GrSurfaceProxy> tmp = GrSurfaceProxy::MakeDeferred(*context->caps(), context->textureProvider(), desc, SkBudgeted::kYes, bm.getPixels(), bm.rowBytes()); return sk_ref_sp(tmp->asTextureProxy()); } #endif static void test_color(skiatest::Reporter* reporter, const SkBitmap& bm, int x, SkColor expected) { SkColor readback = bm.getColor(x, kDrawnTileSize/2); REPORTER_ASSERT(reporter, expected == readback); if (expected != readback) { SkDebugf("Color mismatch: %x %x\n", expected, readback); } } /* * For the atlasing test we make a DAG that looks like: * * RT1 with ops: 0,1,2 RT2 with ops: 3,4,5 RT3 with ops: 6,7,8 * \ / * \ / * RT4 * We then flush RT4 and expect only ops 0-5 to be atlased together. * Each op is just a solid colored rect so both the atlas and the final image should appear as: * R G B C M Y * with the atlas having width = 6*kAtlasTileSize and height = kAtlasTileSize. * * Note: until partial flushes in MDB lands, the atlas will actually have width= 9*kAtlasTileSize * and look like: * R G B C M Y K Grey White */ DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(OnFlushCallbackTest, reporter, ctxInfo) { static const int kNumProxies = 3; GrContext* context = ctxInfo.grContext(); auto proxyProvider = context->priv().proxyProvider(); AtlasObject object; context->priv().addOnFlushCallbackObject(&object); sk_sp<GrTextureProxy> proxies[kNumProxies]; for (int i = 0; i < kNumProxies; ++i) { proxies[i] = make_upstream_image(context, &object, i*3, object.getAtlasProxy(proxyProvider, context->priv().caps())); } static const int kFinalWidth = 6*kDrawnTileSize; static const int kFinalHeight = kDrawnTileSize; const GrBackendFormat format = context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); sk_sp<GrRenderTargetContext> rtc(context->priv().makeDeferredRenderTargetContext( format, SkBackingFit::kApprox, kFinalWidth, kFinalHeight, kRGBA_8888_GrPixelConfig, nullptr)); rtc->clear(nullptr, SK_PMColor4fWHITE, GrRenderTargetContext::CanClearFullscreen::kYes); // Note that this doesn't include the third texture proxy for (int i = 0; i < kNumProxies-1; ++i) { SkRect r = SkRect::MakeXYWH(i*3*kDrawnTileSize, 0, 3*kDrawnTileSize, kDrawnTileSize); SkMatrix t = SkMatrix::MakeTrans(-i*3*kDrawnTileSize, 0); GrPaint paint; auto fp = GrSimpleTextureEffect::Make(std::move(proxies[i]), t); paint.setPorterDuffXPFactory(SkBlendMode::kSrc); paint.addColorFragmentProcessor(std::move(fp)); rtc->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r); } rtc->prepareForExternalIO(SkSurface::BackendSurfaceAccess::kNoAccess, kNone_GrFlushFlags, 0, nullptr, nullptr, nullptr); SkBitmap readBack; readBack.allocN32Pixels(kFinalWidth, kFinalHeight); SkDEBUGCODE(bool result =) rtc->readPixels(readBack.info(), readBack.getPixels(), readBack.rowBytes(), 0, 0); SkASSERT(result); context->priv().testingOnly_flushAndRemoveOnFlushCallbackObject(&object); object.markAsDone(); int x = kDrawnTileSize/2; test_color(reporter, readBack, x, SK_ColorRED); x += kDrawnTileSize; test_color(reporter, readBack, x, SK_ColorGREEN); x += kDrawnTileSize; test_color(reporter, readBack, x, SK_ColorBLUE); x += kDrawnTileSize; test_color(reporter, readBack, x, SK_ColorCYAN); x += kDrawnTileSize; test_color(reporter, readBack, x, SK_ColorMAGENTA); x += kDrawnTileSize; test_color(reporter, readBack, x, SK_ColorYELLOW); }