/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Sk4fGradientBase.h" #include "SkPaint.h" #include <functional> namespace { Sk4f pack_color(const SkColor4f& c4f, bool premul, const Sk4f& component_scale) { Sk4f pm4f = premul ? Sk4f::Load(c4f.premul().vec()) : Sk4f::Load(c4f.vec()); if (premul) { // If the stops are premul, we clamp them to gamut now. // If the stops are unpremul, the colors will eventually go through Sk4f_toL32(), // which ends up clamping to gamut then. pm4f = Sk4f::Max(0, Sk4f::Min(pm4f, pm4f[3])); } return pm4f * component_scale; } class IntervalIterator { public: IntervalIterator(const SkGradientShaderBase& shader, bool reverse) : fShader(shader) , fFirstPos(reverse ? SK_Scalar1 : 0) , fBegin(reverse ? shader.fColorCount - 1 : 0) , fAdvance(reverse ? -1 : 1) { SkASSERT(shader.fColorCount > 0); } void iterate(const SkColor4f* colors, std::function<void(const SkColor4f&, const SkColor4f&, SkScalar, SkScalar)> func) const { if (!fShader.fOrigPos) { this->iterateImplicitPos(colors, func); return; } const int end = fBegin + fAdvance * (fShader.fColorCount - 1); int prev = fBegin; SkScalar prevPos = fFirstPos; do { const int curr = prev + fAdvance; SkASSERT(curr >= 0 && curr < fShader.fColorCount); const SkScalar currPos = fShader.fOrigPos[curr]; if (currPos != prevPos) { SkASSERT((currPos - prevPos > 0) == (fAdvance > 0)); func(colors[prev], colors[curr], prevPos, currPos); } prev = curr; prevPos = currPos; } while (prev != end); } private: void iterateImplicitPos(const SkColor4f* colors, std::function<void(const SkColor4f&, const SkColor4f&, SkScalar, SkScalar)> func) const { // When clients don't provide explicit color stop positions (fPos == nullptr), // the color stops are distributed evenly across the unit interval // (implicit positioning). const SkScalar dt = fAdvance * SK_Scalar1 / (fShader.fColorCount - 1); const int end = fBegin + fAdvance * (fShader.fColorCount - 2); int prev = fBegin; SkScalar prevPos = fFirstPos; while (prev != end) { const int curr = prev + fAdvance; SkASSERT(curr >= 0 && curr < fShader.fColorCount); const SkScalar currPos = prevPos + dt; func(colors[prev], colors[curr], prevPos, currPos); prev = curr; prevPos = currPos; } // emit the last interval with a pinned end position, to avoid precision issues func(colors[prev], colors[prev + fAdvance], prevPos, 1 - fFirstPos); } const SkGradientShaderBase& fShader; const SkScalar fFirstPos; const int fBegin; const int fAdvance; }; void addMirrorIntervals(const SkGradientShaderBase& shader, const SkColor4f* colors, const Sk4f& componentScale, bool premulColors, bool reverse, Sk4fGradientIntervalBuffer::BufferType* buffer) { const IntervalIterator iter(shader, reverse); iter.iterate(colors, [&] (const SkColor4f& c0, const SkColor4f& c1, SkScalar t0, SkScalar t1) { SkASSERT(buffer->empty() || buffer->back().fT1 == 2 - t0); const auto mirror_t0 = 2 - t0; const auto mirror_t1 = 2 - t1; // mirror_p1 & mirror_p1 may collapse for very small values - recheck to avoid // triggering Interval asserts. if (mirror_t0 != mirror_t1) { buffer->emplace_back(pack_color(c0, premulColors, componentScale), mirror_t0, pack_color(c1, premulColors, componentScale), mirror_t1); } }); } } // anonymous namespace Sk4fGradientInterval::Sk4fGradientInterval(const Sk4f& c0, SkScalar t0, const Sk4f& c1, SkScalar t1) : fT0(t0) , fT1(t1) { SkASSERT(t0 != t1); // Either p0 or p1 can be (-)inf for synthetic clamp edge intervals. SkASSERT(SkScalarIsFinite(t0) || SkScalarIsFinite(t1)); const auto dt = t1 - t0; // Clamp edge intervals are always zero-ramp. SkASSERT(SkScalarIsFinite(dt) || (c0 == c1).allTrue()); SkASSERT(SkScalarIsFinite(t0) || (c0 == c1).allTrue()); const Sk4f dc = SkScalarIsFinite(dt) ? (c1 - c0) / dt : 0; const Sk4f bias = c0 - (SkScalarIsFinite(t0) ? t0 * dc : 0); bias.store(fCb.vec()); dc.store(fCg.vec()); } void Sk4fGradientIntervalBuffer::init(const SkGradientShaderBase& shader, SkColorSpace* dstCS, SkShader::TileMode tileMode, bool premulColors, SkScalar alpha, bool reverse) { // The main job here is to build a specialized interval list: a different // representation of the color stops data, optimized for efficient scan line // access during shading. // // [{P0,C0} , {P1,C1}) [{P1,C2} , {P2,c3}) ... [{Pn,C2n} , {Pn+1,C2n+1}) // // The list may be inverted when requested (such that e.g. points are sorted // in increasing x order when dx < 0). // // Note: the current representation duplicates pos data; we could refactor to // avoid this if interval storage size becomes a concern. // // Aside from reordering, we also perform two more pre-processing steps at // this stage: // // 1) scale the color components depending on paint alpha and the requested // interpolation space (note: the interval color storage is SkPMColor4f, but // that doesn't necessarily mean the colors are premultiplied; that // property is tracked in fColorsArePremul) // // 2) inject synthetic intervals to support tiling. // // * for kRepeat, no extra intervals are needed - the iterator just // wraps around at the end: // // ->[P0,P1)->..[Pn-1,Pn)-> // // * for kClamp, we add two "infinite" intervals before/after: // // [-/+inf , P0)->[P0 , P1)->..[Pn-1 , Pn)->[Pn , +/-inf) // // (the iterator should never run off the end in this mode) // // * for kMirror, we extend the range to [0..2] and add a flipped // interval series - then the iterator operates just as in the // kRepeat case: // // ->[P0,P1)->..[Pn-1,Pn)->[2 - Pn,2 - Pn-1)->..[2 - P1,2 - P0)-> // // TODO: investigate collapsing intervals << 1px. const auto count = shader.fColorCount; SkASSERT(count > 0); fIntervals.reset(); const Sk4f componentScale = premulColors ? Sk4f(alpha) : Sk4f(1.0f, 1.0f, 1.0f, alpha); const int first_index = reverse ? count - 1 : 0; const int last_index = count - 1 - first_index; const SkScalar first_pos = reverse ? SK_Scalar1 : 0; const SkScalar last_pos = SK_Scalar1 - first_pos; // Transform all of the colors to destination color space SkColor4fXformer xformedColors(shader.fOrigColors4f, count, shader.fColorSpace.get(), dstCS); if (tileMode == SkShader::kClamp_TileMode) { // synthetic edge interval: -/+inf .. P0 const Sk4f clamp_color = pack_color(xformedColors.fColors[first_index], premulColors, componentScale); const SkScalar clamp_pos = reverse ? SK_ScalarInfinity : SK_ScalarNegativeInfinity; fIntervals.emplace_back(clamp_color, clamp_pos, clamp_color, first_pos); } else if (tileMode == SkShader::kMirror_TileMode && reverse) { // synthetic mirror intervals injected before main intervals: (2 .. 1] addMirrorIntervals(shader, xformedColors.fColors, componentScale, premulColors, false, &fIntervals); } const IntervalIterator iter(shader, reverse); iter.iterate(xformedColors.fColors, [&] (const SkColor4f& c0, const SkColor4f& c1, SkScalar t0, SkScalar t1) { SkASSERT(fIntervals.empty() || fIntervals.back().fT1 == t0); fIntervals.emplace_back(pack_color(c0, premulColors, componentScale), t0, pack_color(c1, premulColors, componentScale), t1); }); if (tileMode == SkShader::kClamp_TileMode) { // synthetic edge interval: Pn .. +/-inf const Sk4f clamp_color = pack_color(xformedColors.fColors[last_index], premulColors, componentScale); const SkScalar clamp_pos = reverse ? SK_ScalarNegativeInfinity : SK_ScalarInfinity; fIntervals.emplace_back(clamp_color, last_pos, clamp_color, clamp_pos); } else if (tileMode == SkShader::kMirror_TileMode && !reverse) { // synthetic mirror intervals injected after main intervals: [1 .. 2) addMirrorIntervals(shader, xformedColors.fColors, componentScale, premulColors, true, &fIntervals); } } const Sk4fGradientInterval* Sk4fGradientIntervalBuffer::find(SkScalar t) const { // Binary search. const auto* i0 = fIntervals.begin(); const auto* i1 = fIntervals.end() - 1; while (i0 != i1) { SkASSERT(i0 < i1); SkASSERT(t >= i0->fT0 && t <= i1->fT1); const auto* i = i0 + ((i1 - i0) >> 1); if (t > i->fT1) { i0 = i + 1; } else { i1 = i; } } SkASSERT(i0->contains(t)); return i0; } const Sk4fGradientInterval* Sk4fGradientIntervalBuffer::findNext( SkScalar t, const Sk4fGradientInterval* prev, bool increasing) const { SkASSERT(!prev->contains(t)); SkASSERT(prev >= fIntervals.begin() && prev < fIntervals.end()); SkASSERT(t >= fIntervals.front().fT0 && t <= fIntervals.back().fT1); const auto* i = prev; // Use the |increasing| signal to figure which direction we should search for // the next interval, then perform a linear search. if (increasing) { do { i += 1; if (i >= fIntervals.end()) { i = fIntervals.begin(); } } while (!i->contains(t)); } else { do { i -= 1; if (i < fIntervals.begin()) { i = fIntervals.end() - 1; } } while (!i->contains(t)); } return i; } SkGradientShaderBase:: GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderBase& shader, const ContextRec& rec) : INHERITED(shader, rec) , fFlags(this->INHERITED::getFlags()) , fDither(rec.fPaint->isDither()) { const SkMatrix& inverse = this->getTotalInverse(); fDstToPos.setConcat(shader.fPtsToUnit, inverse); SkASSERT(!fDstToPos.hasPerspective()); fDstToPosProc = SkMatrixPriv::GetMapXYProc(fDstToPos); if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) { fFlags |= kOpaqueAlpha_Flag; } fColorsArePremul = (shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) || shader.fColorsAreOpaque; } bool SkGradientShaderBase:: GradientShaderBase4fContext::isValid() const { return fDstToPos.isFinite(); }