/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPerlinNoiseShader.h" #include "SkArenaAlloc.h" #include "SkColorFilter.h" #include "SkMakeUnique.h" #include "SkReadBuffer.h" #include "SkShader.h" #include "SkString.h" #include "SkUnPreMultiply.h" #include "SkWriteBuffer.h" #if SK_SUPPORT_GPU #include "GrCoordTransform.h" #include "GrRecordingContext.h" #include "GrRecordingContextPriv.h" #include "SkGr.h" #include "effects/GrConstColorProcessor.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #endif static const int kBlockSize = 256; static const int kBlockMask = kBlockSize - 1; static const int kPerlinNoise = 4096; static const int kRandMaximum = SK_MaxS32; // 2**31 - 1 static uint8_t improved_noise_permutations[] = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180, 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 }; class SkPerlinNoiseShaderImpl : public SkShaderBase { public: struct StitchData { StitchData() : fWidth(0) , fWrapX(0) , fHeight(0) , fWrapY(0) {} StitchData(SkScalar w, SkScalar h) : fWidth(SkTMin(SkScalarRoundToInt(w), SK_MaxS32 - kPerlinNoise)) , fWrapX(kPerlinNoise + fWidth) , fHeight(SkTMin(SkScalarRoundToInt(h), SK_MaxS32 - kPerlinNoise)) , fWrapY(kPerlinNoise + fHeight) {} bool operator==(const StitchData& other) const { return fWidth == other.fWidth && fWrapX == other.fWrapX && fHeight == other.fHeight && fWrapY == other.fWrapY; } int fWidth; // How much to subtract to wrap for stitching. int fWrapX; // Minimum value to wrap. int fHeight; int fWrapY; }; struct PaintingData { PaintingData(const SkISize& tileSize, SkScalar seed, SkScalar baseFrequencyX, SkScalar baseFrequencyY, const SkMatrix& matrix) { SkVector tileVec; matrix.mapVector(SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight), &tileVec); SkSize scale; if (!matrix.decomposeScale(&scale, nullptr)) { scale.set(SK_ScalarNearlyZero, SK_ScalarNearlyZero); } fBaseFrequency.set(baseFrequencyX * SkScalarInvert(scale.width()), baseFrequencyY * SkScalarInvert(scale.height())); fTileSize.set(SkScalarRoundToInt(tileVec.fX), SkScalarRoundToInt(tileVec.fY)); this->init(seed); if (!fTileSize.isEmpty()) { this->stitch(); } #if SK_SUPPORT_GPU SkImageInfo info = SkImageInfo::MakeA8(kBlockSize, 1); SkPixmap permutationsPixmap(info, fLatticeSelector, info.minRowBytes()); fPermutationsImage = SkImage::MakeFromRaster(permutationsPixmap, nullptr, nullptr); info = SkImageInfo::MakeN32Premul(kBlockSize, 4); SkPixmap noisePixmap(info, fNoise[0][0], info.minRowBytes()); fNoiseImage = SkImage::MakeFromRaster(noisePixmap, nullptr, nullptr); info = SkImageInfo::MakeA8(256, 1); SkPixmap impPermutationsPixmap(info, improved_noise_permutations, info.minRowBytes()); fImprovedPermutationsImage = SkImage::MakeFromRaster(impPermutationsPixmap, nullptr, nullptr); static uint8_t gradients[] = { 2, 2, 1, 0, 0, 2, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 1, 2, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 2, 2, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 0, 0, 0, 2, 2, 1, 0, 1, 0, 2, 0, 0, 2, 1, 0, 1, 0, 0, 0 }; info = SkImageInfo::MakeN32Premul(16, 1); SkPixmap gradPixmap(info, gradients, info.minRowBytes()); fGradientImage = SkImage::MakeFromRaster(gradPixmap, nullptr, nullptr); #endif } #if SK_SUPPORT_GPU PaintingData(const PaintingData& that) : fSeed(that.fSeed) , fTileSize(that.fTileSize) , fBaseFrequency(that.fBaseFrequency) , fStitchDataInit(that.fStitchDataInit) , fPermutationsImage(that.fPermutationsImage) , fNoiseImage(that.fNoiseImage) , fImprovedPermutationsImage(that.fImprovedPermutationsImage) , fGradientImage(that.fGradientImage) { memcpy(fLatticeSelector, that.fLatticeSelector, sizeof(fLatticeSelector)); memcpy(fNoise, that.fNoise, sizeof(fNoise)); memcpy(fGradient, that.fGradient, sizeof(fGradient)); } #endif int fSeed; uint8_t fLatticeSelector[kBlockSize]; uint16_t fNoise[4][kBlockSize][2]; SkPoint fGradient[4][kBlockSize]; SkISize fTileSize; SkVector fBaseFrequency; StitchData fStitchDataInit; private: #if SK_SUPPORT_GPU sk_sp<SkImage> fPermutationsImage; sk_sp<SkImage> fNoiseImage; sk_sp<SkImage> fImprovedPermutationsImage; sk_sp<SkImage> fGradientImage; #endif inline int random() { static const int gRandAmplitude = 16807; // 7**5; primitive root of m static const int gRandQ = 127773; // m / a static const int gRandR = 2836; // m % a int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ); if (result <= 0) result += kRandMaximum; fSeed = result; return result; } // Only called once. Could be part of the constructor. void init(SkScalar seed) { static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize)); // According to the SVG spec, we must truncate (not round) the seed value. fSeed = SkScalarTruncToInt(seed); // The seed value clamp to the range [1, kRandMaximum - 1]. if (fSeed <= 0) { fSeed = -(fSeed % (kRandMaximum - 1)) + 1; } if (fSeed > kRandMaximum - 1) { fSeed = kRandMaximum - 1; } for (int channel = 0; channel < 4; ++channel) { for (int i = 0; i < kBlockSize; ++i) { fLatticeSelector[i] = i; fNoise[channel][i][0] = (random() % (2 * kBlockSize)); fNoise[channel][i][1] = (random() % (2 * kBlockSize)); } } for (int i = kBlockSize - 1; i > 0; --i) { int k = fLatticeSelector[i]; int j = random() % kBlockSize; SkASSERT(j >= 0); SkASSERT(j < kBlockSize); fLatticeSelector[i] = fLatticeSelector[j]; fLatticeSelector[j] = k; } // Perform the permutations now { // Copy noise data uint16_t noise[4][kBlockSize][2]; for (int i = 0; i < kBlockSize; ++i) { for (int channel = 0; channel < 4; ++channel) { for (int j = 0; j < 2; ++j) { noise[channel][i][j] = fNoise[channel][i][j]; } } } // Do permutations on noise data for (int i = 0; i < kBlockSize; ++i) { for (int channel = 0; channel < 4; ++channel) { for (int j = 0; j < 2; ++j) { fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j]; } } } } // Half of the largest possible value for 16 bit unsigned int static const SkScalar gHalfMax16bits = 32767.5f; // Compute gradients from permutated noise data for (int channel = 0; channel < 4; ++channel) { for (int i = 0; i < kBlockSize; ++i) { fGradient[channel][i] = SkPoint::Make( (fNoise[channel][i][0] - kBlockSize) * gInvBlockSizef, (fNoise[channel][i][1] - kBlockSize) * gInvBlockSizef); fGradient[channel][i].normalize(); // Put the normalized gradient back into the noise data fNoise[channel][i][0] = SkScalarRoundToInt( (fGradient[channel][i].fX + 1) * gHalfMax16bits); fNoise[channel][i][1] = SkScalarRoundToInt( (fGradient[channel][i].fY + 1) * gHalfMax16bits); } } } // Only called once. Could be part of the constructor. void stitch() { SkScalar tileWidth = SkIntToScalar(fTileSize.width()); SkScalar tileHeight = SkIntToScalar(fTileSize.height()); SkASSERT(tileWidth > 0 && tileHeight > 0); // When stitching tiled turbulence, the frequencies must be adjusted // so that the tile borders will be continuous. if (fBaseFrequency.fX) { SkScalar lowFrequencx = SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth; SkScalar highFrequencx = SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth; // BaseFrequency should be non-negative according to the standard. // lowFrequencx can be 0 if fBaseFrequency.fX is very small. if (sk_ieee_float_divide(fBaseFrequency.fX, lowFrequencx) < highFrequencx / fBaseFrequency.fX) { fBaseFrequency.fX = lowFrequencx; } else { fBaseFrequency.fX = highFrequencx; } } if (fBaseFrequency.fY) { SkScalar lowFrequency = SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight; SkScalar highFrequency = SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight; // lowFrequency can be 0 if fBaseFrequency.fY is very small. if (sk_ieee_float_divide(fBaseFrequency.fY, lowFrequency) < highFrequency / fBaseFrequency.fY) { fBaseFrequency.fY = lowFrequency; } else { fBaseFrequency.fY = highFrequency; } } // Set up TurbulenceInitial stitch values. fStitchDataInit = StitchData(tileWidth * fBaseFrequency.fX, tileHeight * fBaseFrequency.fY); } public: #if SK_SUPPORT_GPU const sk_sp<SkImage> getPermutationsImage() const { return fPermutationsImage; } const sk_sp<SkImage> getNoiseImage() const { return fNoiseImage; } const sk_sp<SkImage> getImprovedPermutationsImage() const { return fImprovedPermutationsImage; } const sk_sp<SkImage> getGradientImage() const { return fGradientImage; } #endif }; /** * About the noise types : the difference between the first 2 is just minor tweaks to the * algorithm, they're not 2 entirely different noises. The output looks different, but once the * noise is generated in the [1, -1] range, the output is brought back in the [0, 1] range by * doing : * kFractalNoise_Type : noise * 0.5 + 0.5 * kTurbulence_Type : abs(noise) * Very little differences between the 2 types, although you can tell the difference visually. * "Improved" is based on the Improved Perlin Noise algorithm described at * http://mrl.nyu.edu/~perlin/noise/. It is quite distinct from the other two, and the noise is * a 2D slice of a 3D noise texture. Minor changes to the Z coordinate will result in minor * changes to the noise, making it suitable for animated noise. */ enum Type { kFractalNoise_Type, kTurbulence_Type, kImprovedNoise_Type, kLast_Type = kImprovedNoise_Type }; static const int kMaxOctaves = 255; // numOctaves must be <= 0 and <= kMaxOctaves SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::Type type, SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize); class PerlinNoiseShaderContext : public Context { public: PerlinNoiseShaderContext(const SkPerlinNoiseShaderImpl& shader, const ContextRec&); void shadeSpan(int x, int y, SkPMColor[], int count) override; private: SkPMColor shade(const SkPoint& point, StitchData& stitchData) const; SkScalar calculateTurbulenceValueForPoint( int channel, StitchData& stitchData, const SkPoint& point) const; SkScalar calculateImprovedNoiseValueForPoint(int channel, const SkPoint& point) const; SkScalar noise2D(int channel, const StitchData& stitchData, const SkPoint& noiseVector) const; SkMatrix fMatrix; PaintingData fPaintingData; typedef Context INHERITED; }; #if SK_SUPPORT_GPU std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(const GrFPArgs&) const override; #endif protected: void flatten(SkWriteBuffer&) const override; #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const override; #endif private: SK_FLATTENABLE_HOOKS(SkPerlinNoiseShaderImpl) const SkPerlinNoiseShaderImpl::Type fType; const SkScalar fBaseFrequencyX; const SkScalar fBaseFrequencyY; const int fNumOctaves; const SkScalar fSeed; const SkISize fTileSize; const bool fStitchTiles; friend class ::SkPerlinNoiseShader; typedef SkShaderBase INHERITED; }; namespace { // noiseValue is the color component's value (or color) // limitValue is the maximum perlin noise array index value allowed // newValue is the current noise dimension (either width or height) inline int checkNoise(int noiseValue, int limitValue, int newValue) { // If the noise value would bring us out of bounds of the current noise array while we are // stiching noise tiles together, wrap the noise around the current dimension of the noise to // stay within the array bounds in a continuous fashion (so that tiling lines are not visible) if (noiseValue >= limitValue) { noiseValue -= newValue; } return noiseValue; } inline SkScalar smoothCurve(SkScalar t) { return t * t * (3 - 2 * t); } } // end namespace SkPerlinNoiseShaderImpl::SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::Type type, SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) : fType(type) , fBaseFrequencyX(baseFrequencyX) , fBaseFrequencyY(baseFrequencyY) , fNumOctaves(numOctaves > kMaxOctaves ? kMaxOctaves : numOctaves/*[0,255] octaves allowed*/) , fSeed(seed) , fTileSize(nullptr == tileSize ? SkISize::Make(0, 0) : *tileSize) , fStitchTiles(!fTileSize.isEmpty()) { SkASSERT(numOctaves >= 0 && numOctaves <= kMaxOctaves); SkASSERT(fBaseFrequencyX >= 0); SkASSERT(fBaseFrequencyY >= 0); } sk_sp<SkFlattenable> SkPerlinNoiseShaderImpl::CreateProc(SkReadBuffer& buffer) { Type type = buffer.read32LE(kLast_Type); SkScalar freqX = buffer.readScalar(); SkScalar freqY = buffer.readScalar(); int octaves = buffer.read32LE<int>(kMaxOctaves); SkScalar seed = buffer.readScalar(); SkISize tileSize; tileSize.fWidth = buffer.readInt(); tileSize.fHeight = buffer.readInt(); switch (type) { case kFractalNoise_Type: return SkPerlinNoiseShader::MakeFractalNoise(freqX, freqY, octaves, seed, &tileSize); case kTurbulence_Type: return SkPerlinNoiseShader::MakeTurbulence(freqX, freqY, octaves, seed, &tileSize); case kImprovedNoise_Type: return SkPerlinNoiseShader::MakeImprovedNoise(freqX, freqY, octaves, seed); default: // Really shouldn't get here b.c. of earlier check on type buffer.validate(false); return nullptr; } } void SkPerlinNoiseShaderImpl::flatten(SkWriteBuffer& buffer) const { buffer.writeInt((int) fType); buffer.writeScalar(fBaseFrequencyX); buffer.writeScalar(fBaseFrequencyY); buffer.writeInt(fNumOctaves); buffer.writeScalar(fSeed); buffer.writeInt(fTileSize.fWidth); buffer.writeInt(fTileSize.fHeight); } SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::noise2D( int channel, const StitchData& stitchData, const SkPoint& noiseVector) const { struct Noise { int noisePositionIntegerValue; int nextNoisePositionIntegerValue; SkScalar noisePositionFractionValue; Noise(SkScalar component) { SkScalar position = component + kPerlinNoise; noisePositionIntegerValue = SkScalarFloorToInt(position); noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue); nextNoisePositionIntegerValue = noisePositionIntegerValue + 1; } }; Noise noiseX(noiseVector.x()); Noise noiseY(noiseVector.y()); SkScalar u, v; const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader); // If stitching, adjust lattice points accordingly. if (perlinNoiseShader.fStitchTiles) { noiseX.noisePositionIntegerValue = checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); noiseY.noisePositionIntegerValue = checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); noiseX.nextNoisePositionIntegerValue = checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); noiseY.nextNoisePositionIntegerValue = checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); } noiseX.noisePositionIntegerValue &= kBlockMask; noiseY.noisePositionIntegerValue &= kBlockMask; noiseX.nextNoisePositionIntegerValue &= kBlockMask; noiseY.nextNoisePositionIntegerValue &= kBlockMask; int i = fPaintingData.fLatticeSelector[noiseX.noisePositionIntegerValue]; int j = fPaintingData.fLatticeSelector[noiseX.nextNoisePositionIntegerValue]; int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask; int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask; int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask; int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask; SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue); SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue); if (sx < 0 || sy < 0 || sx > 1 || sy > 1) { return 0; // Check for pathological inputs. } // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue, noiseY.noisePositionFractionValue); // Offset (0,0) u = fPaintingData.fGradient[channel][b00].dot(fractionValue); fractionValue.fX -= SK_Scalar1; // Offset (-1,0) v = fPaintingData.fGradient[channel][b10].dot(fractionValue); SkScalar a = SkScalarInterp(u, v, sx); fractionValue.fY -= SK_Scalar1; // Offset (-1,-1) v = fPaintingData.fGradient[channel][b11].dot(fractionValue); fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1) u = fPaintingData.fGradient[channel][b01].dot(fractionValue); SkScalar b = SkScalarInterp(u, v, sx); return SkScalarInterp(a, b, sy); } SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint( int channel, StitchData& stitchData, const SkPoint& point) const { const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader); if (perlinNoiseShader.fStitchTiles) { // Set up TurbulenceInitial stitch values. stitchData = fPaintingData.fStitchDataInit; } SkScalar turbulenceFunctionResult = 0; SkPoint noiseVector(SkPoint::Make(point.x() * fPaintingData.fBaseFrequency.fX, point.y() * fPaintingData.fBaseFrequency.fY)); SkScalar ratio = SK_Scalar1; for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) { SkScalar noise = noise2D(channel, stitchData, noiseVector); SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ? noise : SkScalarAbs(noise); turbulenceFunctionResult += numer / ratio; noiseVector.fX *= 2; noiseVector.fY *= 2; ratio *= 2; if (perlinNoiseShader.fStitchTiles) { // Update stitch values stitchData = StitchData(SkIntToScalar(stitchData.fWidth) * 2, SkIntToScalar(stitchData.fHeight) * 2); } } // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 // by fractalNoise and (turbulenceFunctionResult) by turbulence. if (perlinNoiseShader.fType == kFractalNoise_Type) { turbulenceFunctionResult = SkScalarHalf(turbulenceFunctionResult + 1); } if (channel == 3) { // Scale alpha by paint value turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255; } // Clamp result return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1); } //////////////////////////////////////////////////////////////////////////////////////////////////// // Improved Perlin Noise based on Java implementation found at http://mrl.nyu.edu/~perlin/noise/ static SkScalar fade(SkScalar t) { return t * t * t * (t * (t * 6 - 15) + 10); } static SkScalar lerp(SkScalar t, SkScalar a, SkScalar b) { return a + t * (b - a); } static SkScalar grad(int hash, SkScalar x, SkScalar y, SkScalar z) { int h = hash & 15; SkScalar u = h < 8 ? x : y; SkScalar v = h < 4 ? y : h == 12 || h == 14 ? x : z; return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v); } SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::calculateImprovedNoiseValueForPoint( int channel, const SkPoint& point) const { const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader); SkScalar x = point.fX * perlinNoiseShader.fBaseFrequencyX; SkScalar y = point.fY * perlinNoiseShader.fBaseFrequencyY; // z offset between different channels, chosen arbitrarily static const SkScalar CHANNEL_DELTA = 1000.0f; SkScalar z = channel * CHANNEL_DELTA + perlinNoiseShader.fSeed; SkScalar result = 0; SkScalar ratio = SK_Scalar1; for (int i = 0; i < perlinNoiseShader.fNumOctaves; i++) { int X = SkScalarFloorToInt(x) & 255; int Y = SkScalarFloorToInt(y) & 255; int Z = SkScalarFloorToInt(z) & 255; SkScalar px = x - SkScalarFloorToScalar(x); SkScalar py = y - SkScalarFloorToScalar(y); SkScalar pz = z - SkScalarFloorToScalar(z); SkScalar u = fade(px); SkScalar v = fade(py); SkScalar w = fade(pz); uint8_t* permutations = improved_noise_permutations; int A = permutations[X] + Y; int AA = permutations[A] + Z; int AB = permutations[A + 1] + Z; int B = permutations[X + 1] + Y; int BA = permutations[B] + Z; int BB = permutations[B + 1] + Z; result += lerp(w, lerp(v, lerp(u, grad(permutations[AA ], px , py , pz ), grad(permutations[BA ], px - 1, py , pz )), lerp(u, grad(permutations[AB ], px , py - 1, pz ), grad(permutations[BB ], px - 1, py - 1, pz ))), lerp(v, lerp(u, grad(permutations[AA + 1], px , py , pz - 1), grad(permutations[BA + 1], px - 1, py , pz - 1)), lerp(u, grad(permutations[AB + 1], px , py - 1, pz - 1), grad(permutations[BB + 1], px - 1, py - 1, pz - 1)))) / ratio; x *= 2; y *= 2; ratio *= 2; } result = SkScalarClampMax((result + 1.0f) / 2.0f, 1.0f); return result; } //////////////////////////////////////////////////////////////////////////////////////////////////// SkPMColor SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::shade( const SkPoint& point, StitchData& stitchData) const { const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader); SkPoint newPoint; fMatrix.mapPoints(&newPoint, &point, 1); newPoint.fX = SkScalarRoundToScalar(newPoint.fX); newPoint.fY = SkScalarRoundToScalar(newPoint.fY); U8CPU rgba[4]; for (int channel = 3; channel >= 0; --channel) { SkScalar value; if (perlinNoiseShader.fType == kImprovedNoise_Type) { value = calculateImprovedNoiseValueForPoint(channel, newPoint); } else { value = calculateTurbulenceValueForPoint(channel, stitchData, newPoint); } rgba[channel] = SkScalarFloorToInt(255 * value); } return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]); } #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT SkShaderBase::Context* SkPerlinNoiseShaderImpl::onMakeContext(const ContextRec& rec, SkArenaAlloc* alloc) const { // should we pay attention to rec's device-colorspace? return alloc->make<PerlinNoiseShaderContext>(*this, rec); } #endif static inline SkMatrix total_matrix(const SkShaderBase::ContextRec& rec, const SkShaderBase& shader) { SkMatrix matrix = SkMatrix::Concat(*rec.fMatrix, shader.getLocalMatrix()); if (rec.fLocalMatrix) { matrix.preConcat(*rec.fLocalMatrix); } return matrix; } SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::PerlinNoiseShaderContext( const SkPerlinNoiseShaderImpl& shader, const ContextRec& rec) : INHERITED(shader, rec) , fMatrix(total_matrix(rec, shader)) // used for temp storage, adjusted below , fPaintingData(shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX, shader.fBaseFrequencyY, fMatrix) { // This (1,1) translation is due to WebKit's 1 based coordinates for the noise // (as opposed to 0 based, usually). The same adjustment is in the setData() function. fMatrix.setTranslate(-fMatrix.getTranslateX() + SK_Scalar1, -fMatrix.getTranslateY() + SK_Scalar1); } void SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::shadeSpan( int x, int y, SkPMColor result[], int count) { SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y)); StitchData stitchData; for (int i = 0; i < count; ++i) { result[i] = shade(point, stitchData); point.fX += SK_Scalar1; } } ///////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU class GrGLPerlinNoise : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b); protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fStitchDataUni; GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni; typedef GrGLSLFragmentProcessor INHERITED; }; ///////////////////////////////////////////////////////////////////// class GrPerlinNoise2Effect : public GrFragmentProcessor { public: static std::unique_ptr<GrFragmentProcessor> Make( SkPerlinNoiseShaderImpl::Type type, int numOctaves, bool stitchTiles, std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData, sk_sp<GrTextureProxy> permutationsProxy, sk_sp<GrTextureProxy> noiseProxy, const SkMatrix& matrix) { return std::unique_ptr<GrFragmentProcessor>(new GrPerlinNoise2Effect( type, numOctaves, stitchTiles, std::move(paintingData), std::move(permutationsProxy), std::move(noiseProxy), matrix)); } const char* name() const override { return "PerlinNoise"; } std::unique_ptr<GrFragmentProcessor> clone() const override { return std::unique_ptr<GrFragmentProcessor>(new GrPerlinNoise2Effect(*this)); } const SkPerlinNoiseShaderImpl::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; } SkPerlinNoiseShaderImpl::Type type() const { return fType; } bool stitchTiles() const { return fStitchTiles; } const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; } int numOctaves() const { return fNumOctaves; } const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GrGLPerlinNoise; } virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { GrGLPerlinNoise::GenKey(*this, caps, b); } bool onIsEqual(const GrFragmentProcessor& sBase) const override { const GrPerlinNoise2Effect& s = sBase.cast<GrPerlinNoise2Effect>(); return fType == s.fType && fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency && fNumOctaves == s.fNumOctaves && fStitchTiles == s.fStitchTiles && fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit; } GrPerlinNoise2Effect(SkPerlinNoiseShaderImpl::Type type, int numOctaves, bool stitchTiles, std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData, sk_sp<GrTextureProxy> permutationsProxy, sk_sp<GrTextureProxy> noiseProxy, const SkMatrix& matrix) : INHERITED(kGrPerlinNoise2Effect_ClassID, kNone_OptimizationFlags) , fType(type) , fNumOctaves(numOctaves) , fStitchTiles(stitchTiles) , fPermutationsSampler(std::move(permutationsProxy)) , fNoiseSampler(std::move(noiseProxy)) , fPaintingData(std::move(paintingData)) { this->setTextureSamplerCnt(2); fCoordTransform = GrCoordTransform(matrix); this->addCoordTransform(&fCoordTransform); } GrPerlinNoise2Effect(const GrPerlinNoise2Effect& that) : INHERITED(kGrPerlinNoise2Effect_ClassID, kNone_OptimizationFlags) , fType(that.fType) , fCoordTransform(that.fCoordTransform) , fNumOctaves(that.fNumOctaves) , fStitchTiles(that.fStitchTiles) , fPermutationsSampler(that.fPermutationsSampler) , fNoiseSampler(that.fNoiseSampler) , fPaintingData(new SkPerlinNoiseShaderImpl::PaintingData(*that.fPaintingData)) { this->setTextureSamplerCnt(2); this->addCoordTransform(&fCoordTransform); } const TextureSampler& onTextureSampler(int i) const override { return IthTextureSampler(i, fPermutationsSampler, fNoiseSampler); } GR_DECLARE_FRAGMENT_PROCESSOR_TEST SkPerlinNoiseShaderImpl::Type fType; GrCoordTransform fCoordTransform; int fNumOctaves; bool fStitchTiles; TextureSampler fPermutationsSampler; TextureSampler fNoiseSampler; std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> fPaintingData; typedef GrFragmentProcessor INHERITED; }; ///////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoise2Effect); #if GR_TEST_UTILS std::unique_ptr<GrFragmentProcessor> GrPerlinNoise2Effect::TestCreate(GrProcessorTestData* d) { int numOctaves = d->fRandom->nextRangeU(2, 10); bool stitchTiles = d->fRandom->nextBool(); SkScalar seed = SkIntToScalar(d->fRandom->nextU()); SkISize tileSize = SkISize::Make(d->fRandom->nextRangeU(4, 4096), d->fRandom->nextRangeU(4, 4096)); SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f, 0.99f); SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f, 0.99f); sk_sp<SkShader> shader(d->fRandom->nextBool() ? SkPerlinNoiseShader::MakeFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles ? &tileSize : nullptr) : SkPerlinNoiseShader::MakeTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles ? &tileSize : nullptr)); GrTest::TestAsFPArgs asFPArgs(d); return as_SB(shader)->asFragmentProcessor(asFPArgs.args()); } #endif void GrGLPerlinNoise::emitCode(EmitArgs& args) { const GrPerlinNoise2Effect& pne = args.fFp.cast<GrPerlinNoise2Effect>(); GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; SkString vCoords = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, "baseFrequency"); const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni); const char* stitchDataUni = nullptr; if (pne.stitchTiles()) { fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, "stitchData"); stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni); } // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8 const char* chanCoordR = "0.125"; const char* chanCoordG = "0.375"; const char* chanCoordB = "0.625"; const char* chanCoordA = "0.875"; const char* chanCoord = "chanCoord"; const char* stitchData = "stitchData"; const char* ratio = "ratio"; const char* noiseVec = "noiseVec"; const char* noiseSmooth = "noiseSmooth"; const char* floorVal = "floorVal"; const char* fractVal = "fractVal"; const char* uv = "uv"; const char* ab = "ab"; const char* latticeIdx = "latticeIdx"; const char* bcoords = "bcoords"; const char* lattice = "lattice"; const char* inc8bit = "0.00390625"; // 1.0 / 256.0 // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a // [-1,1] vector and perform a dot product between that vector and the provided vector. const char* dotLattice = "dot(((%s.ga + %s.rb * half2(%s)) * half2(2.0) - half2(1.0)), %s);"; // Add noise function const GrShaderVar gPerlinNoiseArgs[] = { GrShaderVar(chanCoord, kHalf_GrSLType), GrShaderVar(noiseVec, kHalf2_GrSLType) }; const GrShaderVar gPerlinNoiseStitchArgs[] = { GrShaderVar(chanCoord, kHalf_GrSLType), GrShaderVar(noiseVec, kHalf2_GrSLType), GrShaderVar(stitchData, kHalf2_GrSLType) }; SkString noiseCode; noiseCode.appendf("\thalf4 %s;\n", floorVal); noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec); noiseCode.appendf("\t%s.zw = %s.xy + half2(1.0);\n", floorVal, floorVal); noiseCode.appendf("\thalf2 %s = fract(%s);\n", fractVal, noiseVec); // smooth curve : t * t * (3 - 2 * t) noiseCode.appendf("\n\thalf2 %s = %s * %s * (half2(3.0) - half2(2.0) * %s);", noiseSmooth, fractVal, fractVal, fractVal); // Adjust frequencies if we're stitching tiles if (pne.stitchTiles()) { noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }", floorVal, stitchData, floorVal, stitchData); } // Get texture coordinates and normalize noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / half4(256.0));\n", floorVal, floorVal); // Get permutation for x { SkString xCoords(""); xCoords.appendf("half2(%s.x, 0.5)", floorVal); noiseCode.appendf("\n\thalf2 %s;\n\t%s.x = ", latticeIdx, latticeIdx); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(), kHalf2_GrSLType); noiseCode.append(".r;"); } // Get permutation for x + 1 { SkString xCoords(""); xCoords.appendf("half2(%s.z, 0.5)", floorVal); noiseCode.appendf("\n\t%s.y = ", latticeIdx); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(), kHalf2_GrSLType); noiseCode.append(".r;"); } #if defined(SK_BUILD_FOR_ANDROID) // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3). // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725 // (or 0.484368 here). The following rounding operation prevents these precision issues from // affecting the result of the noise by making sure that we only have multiples of 1/255. // (Note that 1/255 is about 0.003921569, which is the value used here). noiseCode.appendf("\n\t%s = floor(%s * half2(255.0) + half2(0.5)) * half2(0.003921569);", latticeIdx, latticeIdx); #endif // Get (x,y) coordinates with the permutated x noiseCode.appendf("\n\thalf4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal); noiseCode.appendf("\n\n\thalf2 %s;", uv); // Compute u, at offset (0,0) { SkString latticeCoords(""); latticeCoords.appendf("half2(%s.x, %s)", bcoords, chanCoord); noiseCode.appendf("\n\thalf4 %s = ", lattice); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), kHalf2_GrSLType); noiseCode.appendf(".bgra;\n\t%s.x = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal); // Compute v, at offset (-1,0) { SkString latticeCoords(""); latticeCoords.appendf("half2(%s.y, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), kHalf2_GrSLType); noiseCode.appendf(".bgra;\n\t%s.y = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } // Compute 'a' as a linear interpolation of 'u' and 'v' noiseCode.appendf("\n\thalf2 %s;", ab); noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal); // Compute v, at offset (-1,-1) { SkString latticeCoords(""); latticeCoords.appendf("half2(%s.w, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), kHalf2_GrSLType); noiseCode.appendf(".bgra;\n\t%s.y = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } noiseCode.appendf("\n\t%s.x += 1.0;", fractVal); // Compute u, at offset (0,-1) { SkString latticeCoords(""); latticeCoords.appendf("half2(%s.z, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), kHalf2_GrSLType); noiseCode.appendf(".bgra;\n\t%s.x = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } // Compute 'b' as a linear interpolation of 'u' and 'v' noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); // Compute the noise as a linear interpolation of 'a' and 'b' noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth); SkString noiseFuncName; if (pne.stitchTiles()) { fragBuilder->emitFunction(kHalf_GrSLType, "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs), gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName); } else { fragBuilder->emitFunction(kHalf_GrSLType, "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs), gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName); } // There are rounding errors if the floor operation is not performed here fragBuilder->codeAppendf("\n\t\thalf2 %s = half2(floor(%s.xy) * %s);", noiseVec, vCoords.c_str(), baseFrequencyUni); // Clear the color accumulator fragBuilder->codeAppendf("\n\t\t%s = half4(0.0);", args.fOutputColor); if (pne.stitchTiles()) { // Set up TurbulenceInitial stitch values. fragBuilder->codeAppendf("\n\t\thalf2 %s = %s;", stitchData, stitchDataUni); } fragBuilder->codeAppendf("\n\t\thalf %s = 1.0;", ratio); // Loop over all octaves fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves()); fragBuilder->codeAppendf("\n\t\t\t%s += ", args.fOutputColor); if (pne.type() != SkPerlinNoiseShaderImpl::kFractalNoise_Type) { fragBuilder->codeAppend("abs("); } if (pne.stitchTiles()) { fragBuilder->codeAppendf( "half4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s)," "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))", noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData); } else { fragBuilder->codeAppendf( "half4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s)," "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))", noiseFuncName.c_str(), chanCoordR, noiseVec, noiseFuncName.c_str(), chanCoordG, noiseVec, noiseFuncName.c_str(), chanCoordB, noiseVec, noiseFuncName.c_str(), chanCoordA, noiseVec); } if (pne.type() != SkPerlinNoiseShaderImpl::kFractalNoise_Type) { fragBuilder->codeAppendf(")"); // end of "abs(" } fragBuilder->codeAppendf(" * %s;", ratio); fragBuilder->codeAppendf("\n\t\t\t%s *= half2(2.0);", noiseVec); fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio); if (pne.stitchTiles()) { fragBuilder->codeAppendf("\n\t\t\t%s *= half2(2.0);", stitchData); } fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves if (pne.type() == SkPerlinNoiseShaderImpl::kFractalNoise_Type) { // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 // by fractalNoise and (turbulenceFunctionResult) by turbulence. fragBuilder->codeAppendf("\n\t\t%s = %s * half4(0.5) + half4(0.5);", args.fOutputColor,args.fOutputColor); } // Clamp values fragBuilder->codeAppendf("\n\t\t%s = saturate(%s);", args.fOutputColor, args.fOutputColor); // Pre-multiply the result fragBuilder->codeAppendf("\n\t\t%s = half4(%s.rgb * %s.aaa, %s.a);\n", args.fOutputColor, args.fOutputColor, args.fOutputColor, args.fOutputColor); } void GrGLPerlinNoise::GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrPerlinNoise2Effect& turbulence = processor.cast<GrPerlinNoise2Effect>(); uint32_t key = turbulence.numOctaves(); key = key << 3; // Make room for next 3 bits switch (turbulence.type()) { case SkPerlinNoiseShaderImpl::kFractalNoise_Type: key |= 0x1; break; case SkPerlinNoiseShaderImpl::kTurbulence_Type: key |= 0x2; break; default: // leave key at 0 break; } if (turbulence.stitchTiles()) { key |= 0x4; // Flip the 3rd bit if tile stitching is on } b->add32(key); } void GrGLPerlinNoise::onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { INHERITED::onSetData(pdman, processor); const GrPerlinNoise2Effect& turbulence = processor.cast<GrPerlinNoise2Effect>(); const SkVector& baseFrequency = turbulence.baseFrequency(); pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY); if (turbulence.stitchTiles()) { const SkPerlinNoiseShaderImpl::StitchData& stitchData = turbulence.stitchData(); pdman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth), SkIntToScalar(stitchData.fHeight)); } } ///////////////////////////////////////////////////////////////////// class GrGLImprovedPerlinNoise : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fZUni; GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni; typedef GrGLSLFragmentProcessor INHERITED; }; ///////////////////////////////////////////////////////////////////// class GrImprovedPerlinNoiseEffect : public GrFragmentProcessor { public: static std::unique_ptr<GrFragmentProcessor> Make( int octaves, SkScalar z, std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData, sk_sp<GrTextureProxy> permutationsProxy, sk_sp<GrTextureProxy> gradientProxy, const SkMatrix& matrix) { return std::unique_ptr<GrFragmentProcessor>(new GrImprovedPerlinNoiseEffect( octaves, z, std::move(paintingData), std::move(permutationsProxy), std::move(gradientProxy), matrix)); } const char* name() const override { return "ImprovedPerlinNoise"; } std::unique_ptr<GrFragmentProcessor> clone() const override { return std::unique_ptr<GrFragmentProcessor>(new GrImprovedPerlinNoiseEffect(*this)); } const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; } SkScalar z() const { return fZ; } int octaves() const { return fOctaves; } const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GrGLImprovedPerlinNoise; } void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { GrGLImprovedPerlinNoise::GenKey(*this, caps, b); } bool onIsEqual(const GrFragmentProcessor& sBase) const override { const GrImprovedPerlinNoiseEffect& s = sBase.cast<GrImprovedPerlinNoiseEffect>(); return fZ == fZ && fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency; } GrImprovedPerlinNoiseEffect(int octaves, SkScalar z, std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData, sk_sp<GrTextureProxy> permutationsProxy, sk_sp<GrTextureProxy> gradientProxy, const SkMatrix& matrix) : INHERITED(kGrImprovedPerlinNoiseEffect_ClassID, kNone_OptimizationFlags) , fOctaves(octaves) , fZ(z) , fPermutationsSampler(std::move(permutationsProxy)) , fGradientSampler(std::move(gradientProxy)) , fPaintingData(std::move(paintingData)) { this->setTextureSamplerCnt(2); fCoordTransform = GrCoordTransform(matrix); this->addCoordTransform(&fCoordTransform); } GrImprovedPerlinNoiseEffect(const GrImprovedPerlinNoiseEffect& that) : INHERITED(kGrImprovedPerlinNoiseEffect_ClassID, kNone_OptimizationFlags) , fCoordTransform(that.fCoordTransform) , fOctaves(that.fOctaves) , fZ(that.fZ) , fPermutationsSampler(that.fPermutationsSampler) , fGradientSampler(that.fGradientSampler) , fPaintingData(new SkPerlinNoiseShaderImpl::PaintingData(*that.fPaintingData)) { this->setTextureSamplerCnt(2); this->addCoordTransform(&fCoordTransform); } const TextureSampler& onTextureSampler(int i) const override { return IthTextureSampler(i, fPermutationsSampler, fGradientSampler); } GR_DECLARE_FRAGMENT_PROCESSOR_TEST GrCoordTransform fCoordTransform; int fOctaves; SkScalar fZ; TextureSampler fPermutationsSampler; TextureSampler fGradientSampler; std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> fPaintingData; typedef GrFragmentProcessor INHERITED; }; ///////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrImprovedPerlinNoiseEffect); #if GR_TEST_UTILS std::unique_ptr<GrFragmentProcessor> GrImprovedPerlinNoiseEffect::TestCreate( GrProcessorTestData* d) { SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f, 0.99f); SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f, 0.99f); int numOctaves = d->fRandom->nextRangeU(2, 10); SkScalar z = SkIntToScalar(d->fRandom->nextU()); sk_sp<SkShader> shader(SkPerlinNoiseShader::MakeImprovedNoise(baseFrequencyX, baseFrequencyY, numOctaves, z)); GrTest::TestAsFPArgs asFPArgs(d); return as_SB(shader)->asFragmentProcessor(asFPArgs.args()); } #endif void GrGLImprovedPerlinNoise::emitCode(EmitArgs& args) { const GrImprovedPerlinNoiseEffect& pne = args.fFp.cast<GrImprovedPerlinNoiseEffect>(); GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; SkString vCoords = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, "baseFrequency"); const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni); fZUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "z"); const char* zUni = uniformHandler->getUniformCStr(fZUni); // fade function const GrShaderVar fadeArgs[] = { GrShaderVar("t", kHalf3_GrSLType) }; SkString fadeFuncName; fragBuilder->emitFunction(kHalf3_GrSLType, "fade", SK_ARRAY_COUNT(fadeArgs), fadeArgs, "return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);", &fadeFuncName); // perm function const GrShaderVar permArgs[] = { GrShaderVar("x", kHalf_GrSLType) }; SkString permFuncName; SkString permCode("return "); // FIXME even though I'm creating these textures with kRepeat_TileMode, they're clamped. Not // sure why. Using fract() (here and the next texture lookup) as a workaround. fragBuilder->appendTextureLookup(&permCode, args.fTexSamplers[0], "float2(fract(x / 256.0), 0.0)", kHalf2_GrSLType); permCode.append(".r * 255.0;"); fragBuilder->emitFunction(kHalf_GrSLType, "perm", SK_ARRAY_COUNT(permArgs), permArgs, permCode.c_str(), &permFuncName); // grad function const GrShaderVar gradArgs[] = { GrShaderVar("x", kHalf_GrSLType), GrShaderVar("p", kHalf3_GrSLType) }; SkString gradFuncName; SkString gradCode("return half(dot("); fragBuilder->appendTextureLookup(&gradCode, args.fTexSamplers[1], "float2(fract(x / 16.0), 0.0)", kHalf2_GrSLType); gradCode.append(".rgb * 255.0 - float3(1.0), p));"); fragBuilder->emitFunction(kHalf_GrSLType, "grad", SK_ARRAY_COUNT(gradArgs), gradArgs, gradCode.c_str(), &gradFuncName); // lerp function const GrShaderVar lerpArgs[] = { GrShaderVar("a", kHalf_GrSLType), GrShaderVar("b", kHalf_GrSLType), GrShaderVar("w", kHalf_GrSLType) }; SkString lerpFuncName; fragBuilder->emitFunction(kHalf_GrSLType, "lerp", SK_ARRAY_COUNT(lerpArgs), lerpArgs, "return a + w * (b - a);", &lerpFuncName); // noise function const GrShaderVar noiseArgs[] = { GrShaderVar("p", kHalf3_GrSLType), }; SkString noiseFuncName; SkString noiseCode; noiseCode.append("half3 P = mod(floor(p), 256.0);"); noiseCode.append("p -= floor(p);"); noiseCode.appendf("half3 f = %s(p);", fadeFuncName.c_str()); noiseCode.appendf("half A = %s(P.x) + P.y;", permFuncName.c_str()); noiseCode.appendf("half AA = %s(A) + P.z;", permFuncName.c_str()); noiseCode.appendf("half AB = %s(A + 1.0) + P.z;", permFuncName.c_str()); noiseCode.appendf("half B = %s(P.x + 1.0) + P.y;", permFuncName.c_str()); noiseCode.appendf("half BA = %s(B) + P.z;", permFuncName.c_str()); noiseCode.appendf("half BB = %s(B + 1.0) + P.z;", permFuncName.c_str()); noiseCode.appendf("half result = %s(", lerpFuncName.c_str()); noiseCode.appendf("%s(%s(%s(%s(AA), p),", lerpFuncName.c_str(), lerpFuncName.c_str(), gradFuncName.c_str(), permFuncName.c_str()); noiseCode.appendf("%s(%s(BA), p + half3(-1.0, 0.0, 0.0)), f.x),", gradFuncName.c_str(), permFuncName.c_str()); noiseCode.appendf("%s(%s(%s(AB), p + half3(0.0, -1.0, 0.0)),", lerpFuncName.c_str(), gradFuncName.c_str(), permFuncName.c_str()); noiseCode.appendf("%s(%s(BB), p + half3(-1.0, -1.0, 0.0)), f.x), f.y),", gradFuncName.c_str(), permFuncName.c_str()); noiseCode.appendf("%s(%s(%s(%s(AA + 1.0), p + half3(0.0, 0.0, -1.0)),", lerpFuncName.c_str(), lerpFuncName.c_str(), gradFuncName.c_str(), permFuncName.c_str()); noiseCode.appendf("%s(%s(BA + 1.0), p + half3(-1.0, 0.0, -1.0)), f.x),", gradFuncName.c_str(), permFuncName.c_str()); noiseCode.appendf("%s(%s(%s(AB + 1.0), p + half3(0.0, -1.0, -1.0)),", lerpFuncName.c_str(), gradFuncName.c_str(), permFuncName.c_str()); noiseCode.appendf("%s(%s(BB + 1.0), p + half3(-1.0, -1.0, -1.0)), f.x), f.y), f.z);", gradFuncName.c_str(), permFuncName.c_str()); noiseCode.append("return result;"); fragBuilder->emitFunction(kHalf_GrSLType, "noise", SK_ARRAY_COUNT(noiseArgs), noiseArgs, noiseCode.c_str(), &noiseFuncName); // noiseOctaves function const GrShaderVar noiseOctavesArgs[] = { GrShaderVar("p", kHalf3_GrSLType) }; SkString noiseOctavesFuncName; SkString noiseOctavesCode; noiseOctavesCode.append("half result = 0.0;"); noiseOctavesCode.append("half ratio = 1.0;"); noiseOctavesCode.appendf("for (half i = 0.0; i < %d; i++) {", pne.octaves()); noiseOctavesCode.appendf("result += %s(p) / ratio;", noiseFuncName.c_str()); noiseOctavesCode.append("p *= 2.0;"); noiseOctavesCode.append("ratio *= 2.0;"); noiseOctavesCode.append("}"); noiseOctavesCode.append("return (result + 1.0) / 2.0;"); fragBuilder->emitFunction(kHalf_GrSLType, "noiseOctaves", SK_ARRAY_COUNT(noiseOctavesArgs), noiseOctavesArgs, noiseOctavesCode.c_str(), &noiseOctavesFuncName); fragBuilder->codeAppendf("half2 coords = half2(%s * %s);", vCoords.c_str(), baseFrequencyUni); fragBuilder->codeAppendf("half r = %s(half3(coords, %s));", noiseOctavesFuncName.c_str(), zUni); fragBuilder->codeAppendf("half g = %s(half3(coords, %s + 0000.0));", noiseOctavesFuncName.c_str(), zUni); fragBuilder->codeAppendf("half b = %s(half3(coords, %s + 0000.0));", noiseOctavesFuncName.c_str(), zUni); fragBuilder->codeAppendf("half a = %s(half3(coords, %s + 0000.0));", noiseOctavesFuncName.c_str(), zUni); fragBuilder->codeAppendf("%s = half4(r, g, b, a);", args.fOutputColor); // Clamp values fragBuilder->codeAppendf("%s = saturate(%s);", args.fOutputColor, args.fOutputColor); // Pre-multiply the result fragBuilder->codeAppendf("\n\t\t%s = half4(%s.rgb * %s.aaa, %s.a);\n", args.fOutputColor, args.fOutputColor, args.fOutputColor, args.fOutputColor); } void GrGLImprovedPerlinNoise::GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrImprovedPerlinNoiseEffect& pne = processor.cast<GrImprovedPerlinNoiseEffect>(); b->add32(pne.octaves()); } void GrGLImprovedPerlinNoise::onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { INHERITED::onSetData(pdman, processor); const GrImprovedPerlinNoiseEffect& noise = processor.cast<GrImprovedPerlinNoiseEffect>(); const SkVector& baseFrequency = noise.baseFrequency(); pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY); pdman.set1f(fZUni, noise.z()); } ///////////////////////////////////////////////////////////////////// std::unique_ptr<GrFragmentProcessor> SkPerlinNoiseShaderImpl::asFragmentProcessor( const GrFPArgs& args) const { SkASSERT(args.fContext); const auto localMatrix = this->totalLocalMatrix(args.fPreLocalMatrix, args.fPostLocalMatrix); const auto paintMatrix = SkMatrix::Concat(*args.fViewMatrix, *localMatrix); // Either we don't stitch tiles, either we have a valid tile size SkASSERT(!fStitchTiles || !fTileSize.isEmpty()); std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData = skstd::make_unique<SkPerlinNoiseShaderImpl::PaintingData>(fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY, paintMatrix); SkMatrix m = *args.fViewMatrix; m.setTranslateX(-localMatrix->getTranslateX() + SK_Scalar1); m.setTranslateY(-localMatrix->getTranslateY() + SK_Scalar1); auto proxyProvider = args.fContext->priv().proxyProvider(); if (fType == kImprovedNoise_Type) { // Need to assert that the textures we'll create are power of 2 so a copy isn't needed. // We also know that we will not be using mipmaps. If things things weren't true we should // go through GrBitmapTextureMaker to handle needed copies. const sk_sp<SkImage> permutationsImage = paintingData->getImprovedPermutationsImage(); SkASSERT(SkIsPow2(permutationsImage->width()) && SkIsPow2(permutationsImage->height())); sk_sp<GrTextureProxy> permutationsTexture( GrMakeCachedImageProxy(proxyProvider, std::move(permutationsImage))); const sk_sp<SkImage> gradientImage = paintingData->getGradientImage(); SkASSERT(SkIsPow2(gradientImage->width()) && SkIsPow2(gradientImage->height())); sk_sp<GrTextureProxy> gradientTexture( GrMakeCachedImageProxy(proxyProvider, std::move(gradientImage))); return GrImprovedPerlinNoiseEffect::Make(fNumOctaves, fSeed, std::move(paintingData), std::move(permutationsTexture), std::move(gradientTexture), m); } if (0 == fNumOctaves) { if (kFractalNoise_Type == fType) { // Extract the incoming alpha and emit rgba = (a/4, a/4, a/4, a/2) // TODO: Either treat the output of this shader as sRGB or allow client to specify a // color space of the noise. Either way, this case (and the GLSL) need to convert to // the destination. auto inner = GrConstColorProcessor::Make(SkPMColor4f::FromBytes_RGBA(0x80404040), GrConstColorProcessor::InputMode::kModulateRGBA); return GrFragmentProcessor::MulChildByInputAlpha(std::move(inner)); } // Emit zero. return GrConstColorProcessor::Make(SK_PMColor4fTRANSPARENT, GrConstColorProcessor::InputMode::kIgnore); } // Need to assert that the textures we'll create are power of 2 so that now copy is needed. We // also know that we will not be using mipmaps. If things things weren't true we should go // through GrBitmapTextureMaker to handle needed copies. const sk_sp<SkImage> permutationsImage = paintingData->getPermutationsImage(); SkASSERT(SkIsPow2(permutationsImage->width()) && SkIsPow2(permutationsImage->height())); sk_sp<GrTextureProxy> permutationsProxy = GrMakeCachedImageProxy(proxyProvider, std::move(permutationsImage)); const sk_sp<SkImage> noiseImage = paintingData->getNoiseImage(); SkASSERT(SkIsPow2(noiseImage->width()) && SkIsPow2(noiseImage->height())); sk_sp<GrTextureProxy> noiseProxy = GrMakeCachedImageProxy(proxyProvider, std::move(noiseImage)); if (permutationsProxy && noiseProxy) { auto inner = GrPerlinNoise2Effect::Make(fType, fNumOctaves, fStitchTiles, std::move(paintingData), std::move(permutationsProxy), std::move(noiseProxy), m); return GrFragmentProcessor::MulChildByInputAlpha(std::move(inner)); } return nullptr; } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// static bool valid_input(SkScalar baseX, SkScalar baseY, int numOctaves, const SkISize* tileSize, SkScalar seed) { if (!(baseX >= 0 && baseY >= 0)) { return false; } if (!(numOctaves >= 0 && numOctaves <= SkPerlinNoiseShaderImpl::kMaxOctaves)) { return false; } if (tileSize && !(tileSize->width() >= 0 && tileSize->height() >= 0)) { return false; } if (!SkScalarIsFinite(seed)) { return false; } return true; } sk_sp<SkShader> SkPerlinNoiseShader::MakeFractalNoise(SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) { if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, tileSize, seed)) { return nullptr; } return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kFractalNoise_Type, baseFrequencyX, baseFrequencyY, numOctaves, seed, tileSize)); } sk_sp<SkShader> SkPerlinNoiseShader::MakeTurbulence(SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) { if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, tileSize, seed)) { return nullptr; } return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kTurbulence_Type, baseFrequencyX, baseFrequencyY, numOctaves, seed, tileSize)); } sk_sp<SkShader> SkPerlinNoiseShader::MakeImprovedNoise(SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar z) { if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, nullptr, z)) { return nullptr; } return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kImprovedNoise_Type, baseFrequencyX, baseFrequencyY, numOctaves, z, nullptr)); } void SkPerlinNoiseShader::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkPerlinNoiseShaderImpl); }