/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef Sk4pxXfermode_DEFINED #define Sk4pxXfermode_DEFINED #include "Sk4px.h" #include "SkMSAN.h" #include "SkNx.h" #include "SkXfermodePriv.h" #ifdef SK_FORCE_RASTER_PIPELINE_BLITTER namespace SK_OPTS_NS { /*not static*/ inline SkXfermode* create_xfermode(SkBlendMode) { return nullptr; } } #else namespace { // NOLINT(google-build-namespaces) // Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point. #define XFERMODE(Xfermode) \ struct Xfermode { Sk4px operator()(const Sk4px&, const Sk4px&) const; }; \ inline Sk4px Xfermode::operator()(const Sk4px& d, const Sk4px& s) const XFERMODE(Clear) { return Sk4px::DupPMColor(0); } XFERMODE(Src) { return s; } XFERMODE(Dst) { return d; } XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); } XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); } XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); } XFERMODE(DstIn) { return SrcIn ()(s,d); } XFERMODE(DstOut) { return SrcOut ()(s,d); } XFERMODE(DstOver) { return SrcOver()(s,d); } // [ S * Da + (1 - Sa) * D] XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); } XFERMODE(DstATop) { return SrcATop()(s,d); } //[ S * (1 - Da) + (1 - Sa) * D ] XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); } // [S + D ] XFERMODE(Plus) { return s.saturatedAdd(d); } // [S * D ] XFERMODE(Modulate) { return s.approxMulDiv255(d); } // [S + D - S * D] XFERMODE(Screen) { // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done // in 8-bit space without overflow. S + (1-S)*D is a touch faster because inv() is cheap. return s + d.approxMulDiv255(s.inv()); } #undef XFERMODE // A reasonable fallback mode for doing AA is to simply apply the transfermode first, // then linearly interpolate the AA. template <typename Xfermode> static Sk4px xfer_aa(const Sk4px& d, const Sk4px& s, const Sk4px& aa) { Sk4px bw = Xfermode()(d, s); return (bw * aa + d * aa.inv()).div255(); } // For some transfermodes we specialize AA, either for correctness or performance. #define XFERMODE_AA(Xfermode) \ template <> Sk4px xfer_aa<Xfermode>(const Sk4px& d, const Sk4px& s, const Sk4px& aa) // Plus' clamp needs to happen after AA. skia:3852 XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ] return d.saturatedAdd(s.approxMulDiv255(aa)); } #undef XFERMODE_AA // Src and Clear modes are safe to use with unitialized dst buffers, // even if the implementation branches based on bytes from dst (e.g. asserts in Debug mode). // For those modes, just lie to MSAN that dst is always intialized. template <typename Xfermode> static void mark_dst_initialized_if_safe(void*, void*) {} template <> void mark_dst_initialized_if_safe<Src>(void* dst, void* end) { sk_msan_mark_initialized(dst, end, "Src doesn't read dst."); } template <> void mark_dst_initialized_if_safe<Clear>(void* dst, void* end) { sk_msan_mark_initialized(dst, end, "Clear doesn't read dst."); } template <typename Xfermode> class Sk4pxXfermode : public SkXfermode { public: Sk4pxXfermode() {} void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { mark_dst_initialized_if_safe<Xfermode>(dst, dst+n); if (nullptr == aa) { Sk4px::MapDstSrc(n, dst, src, Xfermode()); } else { Sk4px::MapDstSrcAlpha(n, dst, src, aa, xfer_aa<Xfermode>); } } }; } // namespace namespace SK_OPTS_NS { /*not static*/ inline SkXfermode* create_xfermode(SkBlendMode mode) { switch (mode) { #define CASE(Xfermode) \ case SkBlendMode::k##Xfermode: return new Sk4pxXfermode<Xfermode>() CASE(Clear); CASE(Src); CASE(Dst); CASE(SrcOver); CASE(DstOver); CASE(SrcIn); CASE(DstIn); CASE(SrcOut); CASE(DstOut); CASE(SrcATop); CASE(DstATop); CASE(Xor); CASE(Plus); CASE(Modulate); CASE(Screen); #undef CASE default: break; } return nullptr; } } // namespace SK_OPTS_NS #endif // #ifdef SK_FORCE_RASTER_PIPELINE_BLITTER #endif//Sk4pxXfermode_DEFINED