/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkDescriptorSetManager.h" #include "GrVkDescriptorPool.h" #include "GrVkDescriptorSet.h" #include "GrVkGpu.h" #include "GrVkUniformHandler.h" #if defined(SK_ENABLE_SCOPED_LSAN_SUPPRESSIONS) #include <sanitizer/lsan_interface.h> #endif GrVkDescriptorSetManager* GrVkDescriptorSetManager::CreateUniformManager(GrVkGpu* gpu) { SkSTArray<2, uint32_t> visibilities; // We set the visibility of the first binding to all supported geometry processing shader // stages (vertex, tesselation, geometry, etc.) and the second binding to the fragment // shader. uint32_t geomStages = kVertex_GrShaderFlag; if (gpu->vkCaps().shaderCaps()->geometryShaderSupport()) { geomStages |= kGeometry_GrShaderFlag; } visibilities.push_back(geomStages); visibilities.push_back(kFragment_GrShaderFlag); SkTArray<const GrVkSampler*> samplers; return new GrVkDescriptorSetManager(gpu, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, visibilities, samplers); } GrVkDescriptorSetManager* GrVkDescriptorSetManager::CreateSamplerManager( GrVkGpu* gpu, VkDescriptorType type, const GrVkUniformHandler& uniformHandler) { SkSTArray<4, uint32_t> visibilities; SkSTArray<4, const GrVkSampler*> immutableSamplers; SkASSERT(type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); for (int i = 0 ; i < uniformHandler.numSamplers(); ++i) { visibilities.push_back(uniformHandler.samplerVisibility(i)); immutableSamplers.push_back(uniformHandler.immutableSampler(i)); } return new GrVkDescriptorSetManager(gpu, type, visibilities, immutableSamplers); } GrVkDescriptorSetManager* GrVkDescriptorSetManager::CreateSamplerManager( GrVkGpu* gpu, VkDescriptorType type, const SkTArray<uint32_t>& visibilities) { SkSTArray<4, const GrVkSampler*> immutableSamplers; SkASSERT(type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); for (int i = 0 ; i < visibilities.count(); ++i) { immutableSamplers.push_back(nullptr); } return new GrVkDescriptorSetManager(gpu, type, visibilities, immutableSamplers); } GrVkDescriptorSetManager::GrVkDescriptorSetManager( GrVkGpu* gpu, VkDescriptorType type, const SkTArray<uint32_t>& visibilities, const SkTArray<const GrVkSampler*>& immutableSamplers) : fPoolManager(type, gpu, visibilities, immutableSamplers) { #ifdef SK_DEBUG if (type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) { SkASSERT(visibilities.count() == immutableSamplers.count()); } else { SkASSERT(immutableSamplers.count() == 0); } #endif for (int i = 0; i < visibilities.count(); ++i) { fBindingVisibilities.push_back(visibilities[i]); } for (int i = 0; i < immutableSamplers.count(); ++i) { const GrVkSampler* sampler = immutableSamplers[i]; if (sampler) { sampler->ref(); } fImmutableSamplers.push_back(sampler); } } const GrVkDescriptorSet* GrVkDescriptorSetManager::getDescriptorSet(GrVkGpu* gpu, const Handle& handle) { const GrVkDescriptorSet* ds = nullptr; int count = fFreeSets.count(); if (count > 0) { ds = fFreeSets[count - 1]; fFreeSets.removeShuffle(count - 1); } else { VkDescriptorSet vkDS; fPoolManager.getNewDescriptorSet(gpu, &vkDS); ds = new GrVkDescriptorSet(vkDS, fPoolManager.fPool, handle); } SkASSERT(ds); return ds; } void GrVkDescriptorSetManager::recycleDescriptorSet(const GrVkDescriptorSet* descSet) { SkASSERT(descSet); fFreeSets.push_back(descSet); } void GrVkDescriptorSetManager::release(GrVkGpu* gpu) { fPoolManager.freeGPUResources(gpu); for (int i = 0; i < fFreeSets.count(); ++i) { fFreeSets[i]->unref(gpu); } fFreeSets.reset(); for (int i = 0; i < fImmutableSamplers.count(); ++i) { if (fImmutableSamplers[i]) { fImmutableSamplers[i]->unref(gpu); } } fImmutableSamplers.reset(); } void GrVkDescriptorSetManager::abandon() { fPoolManager.abandonGPUResources(); for (int i = 0; i < fFreeSets.count(); ++i) { fFreeSets[i]->unrefAndAbandon(); } fFreeSets.reset(); for (int i = 0; i < fImmutableSamplers.count(); ++i) { if (fImmutableSamplers[i]) { fImmutableSamplers[i]->unrefAndAbandon(); } } fImmutableSamplers.reset(); } bool GrVkDescriptorSetManager::isCompatible(VkDescriptorType type, const GrVkUniformHandler* uniHandler) const { SkASSERT(uniHandler); if (type != fPoolManager.fDescType) { return false; } SkASSERT(type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); if (fBindingVisibilities.count() != uniHandler->numSamplers()) { return false; } for (int i = 0; i < uniHandler->numSamplers(); ++i) { if (uniHandler->samplerVisibility(i) != fBindingVisibilities[i] || uniHandler->immutableSampler(i) != fImmutableSamplers[i]) { return false; } } return true; } bool GrVkDescriptorSetManager::isCompatible(VkDescriptorType type, const SkTArray<uint32_t>& visibilities) const { if (type != fPoolManager.fDescType) { return false; } if (VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER == type || VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER == type) { if (fBindingVisibilities.count() != visibilities.count()) { return false; } for (int i = 0; i < visibilities.count(); ++i) { if (visibilities[i] != fBindingVisibilities[i] || fImmutableSamplers[i] != nullptr) { return false; } } } return true; } //////////////////////////////////////////////////////////////////////////////// VkShaderStageFlags visibility_to_vk_stage_flags(uint32_t visibility) { VkShaderStageFlags flags = 0; if (visibility & kVertex_GrShaderFlag) { flags |= VK_SHADER_STAGE_VERTEX_BIT; } if (visibility & kGeometry_GrShaderFlag) { flags |= VK_SHADER_STAGE_GEOMETRY_BIT; } if (visibility & kFragment_GrShaderFlag) { flags |= VK_SHADER_STAGE_FRAGMENT_BIT; } return flags; } GrVkDescriptorSetManager::DescriptorPoolManager::DescriptorPoolManager( VkDescriptorType type, GrVkGpu* gpu, const SkTArray<uint32_t>& visibilities, const SkTArray<const GrVkSampler*>& immutableSamplers) : fDescType(type) , fCurrentDescriptorCount(0) , fPool(nullptr) { if (VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER == type || VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER == type) { uint32_t numBindings = visibilities.count(); std::unique_ptr<VkDescriptorSetLayoutBinding[]> dsSamplerBindings( new VkDescriptorSetLayoutBinding[numBindings]); for (uint32_t i = 0; i < numBindings; ++i) { uint32_t visibility = visibilities[i]; dsSamplerBindings[i].binding = i; dsSamplerBindings[i].descriptorType = type; dsSamplerBindings[i].descriptorCount = 1; dsSamplerBindings[i].stageFlags = visibility_to_vk_stage_flags(visibility); if (VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER == type) { if (immutableSamplers[i]) { dsSamplerBindings[i].pImmutableSamplers = immutableSamplers[i]->samplerPtr(); } else { dsSamplerBindings[i].pImmutableSamplers = nullptr; } } } VkDescriptorSetLayoutCreateInfo dsSamplerLayoutCreateInfo; memset(&dsSamplerLayoutCreateInfo, 0, sizeof(VkDescriptorSetLayoutCreateInfo)); dsSamplerLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; dsSamplerLayoutCreateInfo.pNext = nullptr; dsSamplerLayoutCreateInfo.flags = 0; dsSamplerLayoutCreateInfo.bindingCount = numBindings; // Setting to nullptr fixes an error in the param checker validation layer. Even though // bindingCount is 0 (which is valid), it still tries to validate pBindings unless it is // null. dsSamplerLayoutCreateInfo.pBindings = numBindings ? dsSamplerBindings.get() : nullptr; #if defined(SK_ENABLE_SCOPED_LSAN_SUPPRESSIONS) // skia:8713 __lsan::ScopedDisabler lsanDisabler; #endif GR_VK_CALL_ERRCHECK(gpu->vkInterface(), CreateDescriptorSetLayout(gpu->device(), &dsSamplerLayoutCreateInfo, nullptr, &fDescLayout)); fDescCountPerSet = visibilities.count(); } else { SkASSERT(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER == type); GR_STATIC_ASSERT(2 == kUniformDescPerSet); SkASSERT(kUniformDescPerSet == visibilities.count()); // Create Uniform Buffer Descriptor static const uint32_t bindings[kUniformDescPerSet] = { GrVkUniformHandler::kGeometryBinding, GrVkUniformHandler::kFragBinding }; VkDescriptorSetLayoutBinding dsUniBindings[kUniformDescPerSet]; memset(&dsUniBindings, 0, kUniformDescPerSet * sizeof(VkDescriptorSetLayoutBinding)); for (int i = 0; i < kUniformDescPerSet; ++i) { dsUniBindings[i].binding = bindings[i]; dsUniBindings[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; dsUniBindings[i].descriptorCount = 1; dsUniBindings[i].stageFlags = visibility_to_vk_stage_flags(visibilities[i]); dsUniBindings[i].pImmutableSamplers = nullptr; } VkDescriptorSetLayoutCreateInfo uniformLayoutCreateInfo; memset(&uniformLayoutCreateInfo, 0, sizeof(VkDescriptorSetLayoutCreateInfo)); uniformLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; uniformLayoutCreateInfo.pNext = nullptr; uniformLayoutCreateInfo.flags = 0; uniformLayoutCreateInfo.bindingCount = 2; uniformLayoutCreateInfo.pBindings = dsUniBindings; #if defined(SK_ENABLE_SCOPED_LSAN_SUPPRESSIONS) // skia:8713 __lsan::ScopedDisabler lsanDisabler; #endif GR_VK_CALL_ERRCHECK(gpu->vkInterface(), CreateDescriptorSetLayout(gpu->device(), &uniformLayoutCreateInfo, nullptr, &fDescLayout)); fDescCountPerSet = kUniformDescPerSet; } SkASSERT(fDescCountPerSet < kStartNumDescriptors); fMaxDescriptors = kStartNumDescriptors; SkASSERT(fMaxDescriptors > 0); this->getNewPool(gpu); } void GrVkDescriptorSetManager::DescriptorPoolManager::getNewPool(GrVkGpu* gpu) { if (fPool) { fPool->unref(gpu); uint32_t newPoolSize = fMaxDescriptors + ((fMaxDescriptors + 1) >> 1); if (newPoolSize < kMaxDescriptors) { fMaxDescriptors = newPoolSize; } else { fMaxDescriptors = kMaxDescriptors; } } fPool = gpu->resourceProvider().findOrCreateCompatibleDescriptorPool(fDescType, fMaxDescriptors); SkASSERT(fPool); } void GrVkDescriptorSetManager::DescriptorPoolManager::getNewDescriptorSet(GrVkGpu* gpu, VkDescriptorSet* ds) { if (!fMaxDescriptors) { return; } fCurrentDescriptorCount += fDescCountPerSet; if (fCurrentDescriptorCount > fMaxDescriptors) { this->getNewPool(gpu); fCurrentDescriptorCount = fDescCountPerSet; } VkDescriptorSetAllocateInfo dsAllocateInfo; memset(&dsAllocateInfo, 0, sizeof(VkDescriptorSetAllocateInfo)); dsAllocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; dsAllocateInfo.pNext = nullptr; dsAllocateInfo.descriptorPool = fPool->descPool(); dsAllocateInfo.descriptorSetCount = 1; dsAllocateInfo.pSetLayouts = &fDescLayout; GR_VK_CALL_ERRCHECK(gpu->vkInterface(), AllocateDescriptorSets(gpu->device(), &dsAllocateInfo, ds)); } void GrVkDescriptorSetManager::DescriptorPoolManager::freeGPUResources(GrVkGpu* gpu) { if (fDescLayout) { GR_VK_CALL(gpu->vkInterface(), DestroyDescriptorSetLayout(gpu->device(), fDescLayout, nullptr)); fDescLayout = VK_NULL_HANDLE; } if (fPool) { fPool->unref(gpu); fPool = nullptr; } } void GrVkDescriptorSetManager::DescriptorPoolManager::abandonGPUResources() { fDescLayout = VK_NULL_HANDLE; if (fPool) { fPool->unrefAndAbandon(); fPool = nullptr; } }