/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGradientShader.h" #include "GrClampedGradientEffect.h" #include "GrTiledGradientEffect.h" #include "GrLinearGradientLayout.h" #include "GrRadialGradientLayout.h" #include "GrSweepGradientLayout.h" #include "GrTwoPointConicalGradientLayout.h" #include "GrDualIntervalGradientColorizer.h" #include "GrSingleIntervalGradientColorizer.h" #include "GrTextureGradientColorizer.h" #include "GrUnrolledBinaryGradientColorizer.h" #include "GrGradientBitmapCache.h" #include "GrCaps.h" #include "GrColor.h" #include "GrColorSpaceInfo.h" #include "GrRecordingContext.h" #include "GrRecordingContextPriv.h" #include "SkGr.h" // Intervals smaller than this (that aren't hard stops) on low-precision-only devices force us to // use the textured gradient static const SkScalar kLowPrecisionIntervalLimit = 0.01f; // Each cache entry costs 1K or 2K of RAM. Each bitmap will be 1x256 at either 32bpp or 64bpp. static const int kMaxNumCachedGradientBitmaps = 32; static const int kGradientTextureSize = 256; // NOTE: signature takes raw pointers to the color/pos arrays and a count to make it easy for // MakeColorizer to transparently take care of hard stops at the end points of the gradient. static std::unique_ptr<GrFragmentProcessor> make_textured_colorizer(const SkPMColor4f* colors, const SkScalar* positions, int count, bool premul, const GrFPArgs& args) { static GrGradientBitmapCache gCache(kMaxNumCachedGradientBitmaps, kGradientTextureSize); // Use 8888 or F16, depending on the destination config. // TODO: Use 1010102 for opaque gradients, at least if destination is 1010102? SkColorType colorType = kRGBA_8888_SkColorType; if (kLow_GrSLPrecision != GrSLSamplerPrecision(args.fDstColorSpaceInfo->config()) && args.fContext->priv().caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) { colorType = kRGBA_F16_SkColorType; } SkAlphaType alphaType = premul ? kPremul_SkAlphaType : kUnpremul_SkAlphaType; SkBitmap bitmap; gCache.getGradient(colors, positions, count, colorType, alphaType, &bitmap); SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width())); SkASSERT(bitmap.isImmutable()); sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy( args.fContext->priv().proxyProvider(), bitmap); if (proxy == nullptr) { SkDebugf("Gradient won't draw. Could not create texture."); return nullptr; } return GrTextureGradientColorizer::Make(std::move(proxy)); } // Analyze the shader's color stops and positions and chooses an appropriate colorizer to represent // the gradient. static std::unique_ptr<GrFragmentProcessor> make_colorizer(const SkPMColor4f* colors, const SkScalar* positions, int count, bool premul, const GrFPArgs& args) { // If there are hard stops at the beginning or end, the first and/or last color should be // ignored by the colorizer since it should only be used in a clamped border color. By detecting // and removing these stops at the beginning, it makes optimizing the remaining color stops // simpler. // SkGradientShaderBase guarantees that pos[0] == 0 by adding a dummy bool bottomHardStop = SkScalarNearlyEqual(positions[0], positions[1]); // The same is true for pos[end] == 1 bool topHardStop = SkScalarNearlyEqual(positions[count - 2], positions[count - 1]); int offset = 0; if (bottomHardStop) { offset += 1; count--; } if (topHardStop) { count--; } // Two remaining colors means a single interval from 0 to 1 // (but it may have originally been a 3 or 4 color gradient with 1-2 hard stops at the ends) if (count == 2) { return GrSingleIntervalGradientColorizer::Make(colors[offset], colors[offset + 1]); } // Do an early test for the texture fallback to skip all of the other tests for specific // analytic support of the gradient (and compatibility with the hardware), when it's definitely // impossible to use an analytic solution. bool tryAnalyticColorizer = count <= GrUnrolledBinaryGradientColorizer::kMaxColorCount; // The remaining analytic colorizers use scale*t+bias, and the scale/bias values can become // quite large when thresholds are close (but still outside the hardstop limit). If float isn't // 32-bit, output can be incorrect if the thresholds are too close together. However, the // analytic shaders are higher quality, so they can be used with lower precision hardware when // the thresholds are not ill-conditioned. const GrShaderCaps* caps = args.fContext->priv().caps()->shaderCaps(); if (!caps->floatIs32Bits() && tryAnalyticColorizer) { // Could run into problems, check if thresholds are close together (with a limit of .01, so // that scales will be less than 100, which leaves 4 decimals of precision on 16-bit). for (int i = offset; i < count - 1; i++) { SkScalar dt = SkScalarAbs(positions[i] - positions[i + 1]); if (dt <= kLowPrecisionIntervalLimit && dt > SK_ScalarNearlyZero) { tryAnalyticColorizer = false; break; } } } if (tryAnalyticColorizer) { if (count == 3) { // Must be a dual interval gradient, where the middle point is at offset+1 and the two // intervals share the middle color stop. return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1], colors[offset + 1], colors[offset + 2], positions[offset + 1]); } else if (count == 4 && SkScalarNearlyEqual(positions[offset + 1], positions[offset + 2])) { // Two separate intervals that join at the same threshold position return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1], colors[offset + 2], colors[offset + 3], positions[offset + 1]); } // The single and dual intervals are a specialized case of the unrolled binary search // colorizer which can analytically render gradients of up to 8 intervals (up to 9 or 16 // colors depending on how many hard stops are inserted). std::unique_ptr<GrFragmentProcessor> unrolled = GrUnrolledBinaryGradientColorizer::Make( colors + offset, positions + offset, count); if (unrolled) { return unrolled; } } // Otherwise fall back to a rasterized gradient sampled by a texture, which can handle // arbitrary gradients (the only downside being sampling resolution). return make_textured_colorizer(colors + offset, positions + offset, count, premul, args); } // Combines the colorizer and layout with an appropriately configured master effect based on the // gradient's tile mode static std::unique_ptr<GrFragmentProcessor> make_gradient(const SkGradientShaderBase& shader, const GrFPArgs& args, std::unique_ptr<GrFragmentProcessor> layout) { // No shader is possible if a layout couldn't be created, e.g. a layout-specific Make() returned // null. if (layout == nullptr) { return nullptr; } // Convert all colors into destination space and into SkPMColor4fs, and handle // premul issues depending on the interpolation mode bool inputPremul = shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag; bool allOpaque = true; SkAutoSTMalloc<4, SkPMColor4f> colors(shader.fColorCount); SkColor4fXformer xformedColors(shader.fOrigColors4f, shader.fColorCount, shader.fColorSpace.get(), args.fDstColorSpaceInfo->colorSpace()); for (int i = 0; i < shader.fColorCount; i++) { const SkColor4f& upmColor = xformedColors.fColors[i]; colors[i] = inputPremul ? upmColor.premul() : SkPMColor4f{ upmColor.fR, upmColor.fG, upmColor.fB, upmColor.fA }; if (allOpaque && !SkScalarNearlyEqual(colors[i].fA, 1.0)) { allOpaque = false; } } // SkGradientShader stores positions implicitly when they are evenly spaced, but the getPos() // implementation performs a branch for every position index. Since the shader conversion // requires lots of position tests, calculate all of the positions up front if needed. SkTArray<SkScalar, true> implicitPos; SkScalar* positions; if (shader.fOrigPos) { positions = shader.fOrigPos; } else { implicitPos.reserve(shader.fColorCount); SkScalar posScale = SK_Scalar1 / (shader.fColorCount - 1); for (int i = 0 ; i < shader.fColorCount; i++) { implicitPos.push_back(SkIntToScalar(i) * posScale); } positions = implicitPos.begin(); } // All gradients are colorized the same way, regardless of layout std::unique_ptr<GrFragmentProcessor> colorizer = make_colorizer( colors.get(), positions, shader.fColorCount, inputPremul, args); if (colorizer == nullptr) { return nullptr; } // The master effect has to export premul colors, but under certain conditions it doesn't need // to do anything to achieve that: i.e. its interpolating already premul colors (inputPremul) // or all the colors have a = 1, in which case premul is a no op. Note that this allOpaque // check is more permissive than SkGradientShaderBase's isOpaque(), since we can optimize away // the make-premul op for two point conical gradients (which report false for isOpaque). bool makePremul = !inputPremul && !allOpaque; // All tile modes are supported (unless something was added to SkShader) std::unique_ptr<GrFragmentProcessor> master; switch(shader.getTileMode()) { case SkShader::kRepeat_TileMode: master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout), /* mirror */ false, makePremul, allOpaque); break; case SkShader::kMirror_TileMode: master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout), /* mirror */ true, makePremul, allOpaque); break; case SkShader::kClamp_TileMode: // For the clamped mode, the border colors are the first and last colors, corresponding // to t=0 and t=1, because SkGradientShaderBase enforces that by adding color stops as // appropriate. If there is a hard stop, this grabs the expected outer colors for the // border. master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout), colors[0], colors[shader.fColorCount - 1], makePremul, allOpaque); break; case SkShader::kDecal_TileMode: // Even if the gradient colors are opaque, the decal borders are transparent so // disable that optimization master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout), SK_PMColor4fTRANSPARENT, SK_PMColor4fTRANSPARENT, makePremul, /* colorsAreOpaque */ false); break; } if (master == nullptr) { // Unexpected tile mode return nullptr; } if (args.fInputColorIsOpaque) { return GrFragmentProcessor::OverrideInput(std::move(master), SK_PMColor4fWHITE, false); } return GrFragmentProcessor::MulChildByInputAlpha(std::move(master)); } namespace GrGradientShader { std::unique_ptr<GrFragmentProcessor> MakeLinear(const SkLinearGradient& shader, const GrFPArgs& args) { return make_gradient(shader, args, GrLinearGradientLayout::Make(shader, args)); } std::unique_ptr<GrFragmentProcessor> MakeRadial(const SkRadialGradient& shader, const GrFPArgs& args) { return make_gradient(shader,args, GrRadialGradientLayout::Make(shader, args)); } std::unique_ptr<GrFragmentProcessor> MakeSweep(const SkSweepGradient& shader, const GrFPArgs& args) { return make_gradient(shader,args, GrSweepGradientLayout::Make(shader, args)); } std::unique_ptr<GrFragmentProcessor> MakeConical(const SkTwoPointConicalGradient& shader, const GrFPArgs& args) { return make_gradient(shader, args, GrTwoPointConicalGradientLayout::Make(shader, args)); } #if GR_TEST_UTILS RandomParams::RandomParams(SkRandom* random) { // Set color count to min of 2 so that we don't trigger the const color optimization and make // a non-gradient processor. fColorCount = random->nextRangeU(2, kMaxRandomGradientColors); fUseColors4f = random->nextBool(); // if one color, omit stops, otherwise randomly decide whether or not to if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) { fStops = nullptr; } else { fStops = fStopStorage; } // if using SkColor4f, attach a random (possibly null) color space (with linear gamma) if (fUseColors4f) { fColorSpace = GrTest::TestColorSpace(random); } SkScalar stop = 0.f; for (int i = 0; i < fColorCount; ++i) { if (fUseColors4f) { fColors4f[i].fR = random->nextUScalar1(); fColors4f[i].fG = random->nextUScalar1(); fColors4f[i].fB = random->nextUScalar1(); fColors4f[i].fA = random->nextUScalar1(); } else { fColors[i] = random->nextU(); } if (fStops) { fStops[i] = stop; stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; } } fTileMode = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount)); } #endif }