/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCDrawPathsOp.h" #include "GrMemoryPool.h" #include "GrOpFlushState.h" #include "GrRecordingContext.h" #include "GrRecordingContextPriv.h" #include "ccpr/GrCCPathCache.h" #include "ccpr/GrCCPerFlushResources.h" #include "ccpr/GrCoverageCountingPathRenderer.h" static bool has_coord_transforms(const GrPaint& paint) { GrFragmentProcessor::Iter iter(paint); while (const GrFragmentProcessor* fp = iter.next()) { if (!fp->coordTransforms().empty()) { return true; } } return false; } std::unique_ptr<GrCCDrawPathsOp> GrCCDrawPathsOp::Make( GrRecordingContext* context, const SkIRect& clipIBounds, const SkMatrix& m, const GrShape& shape, GrPaint&& paint) { SkRect conservativeDevBounds; m.mapRect(&conservativeDevBounds, shape.bounds()); const SkStrokeRec& stroke = shape.style().strokeRec(); float strokeDevWidth = 0; float conservativeInflationRadius = 0; if (!stroke.isFillStyle()) { strokeDevWidth = GrCoverageCountingPathRenderer::GetStrokeDevWidth( m, stroke, &conservativeInflationRadius); conservativeDevBounds.outset(conservativeInflationRadius, conservativeInflationRadius); } std::unique_ptr<GrCCDrawPathsOp> op; float conservativeSize = SkTMax(conservativeDevBounds.height(), conservativeDevBounds.width()); if (conservativeSize > GrCoverageCountingPathRenderer::kPathCropThreshold) { // The path is too large. Crop it or analytic AA can run out of fp32 precision. SkPath croppedDevPath; shape.asPath(&croppedDevPath); croppedDevPath.transform(m, &croppedDevPath); SkIRect cropBox = clipIBounds; GrShape croppedDevShape; if (stroke.isFillStyle()) { GrCoverageCountingPathRenderer::CropPath(croppedDevPath, cropBox, &croppedDevPath); croppedDevShape = GrShape(croppedDevPath); conservativeDevBounds = croppedDevShape.bounds(); } else { int r = SkScalarCeilToInt(conservativeInflationRadius); cropBox.outset(r, r); GrCoverageCountingPathRenderer::CropPath(croppedDevPath, cropBox, &croppedDevPath); SkStrokeRec devStroke = stroke; devStroke.setStrokeStyle(strokeDevWidth); croppedDevShape = GrShape(croppedDevPath, GrStyle(devStroke, nullptr)); conservativeDevBounds = croppedDevPath.getBounds(); conservativeDevBounds.outset(conservativeInflationRadius, conservativeInflationRadius); } // FIXME: This breaks local coords: http://skbug.com/8003 return InternalMake(context, clipIBounds, SkMatrix::I(), croppedDevShape, strokeDevWidth, conservativeDevBounds, std::move(paint)); } return InternalMake(context, clipIBounds, m, shape, strokeDevWidth, conservativeDevBounds, std::move(paint)); } std::unique_ptr<GrCCDrawPathsOp> GrCCDrawPathsOp::InternalMake( GrRecordingContext* context, const SkIRect& clipIBounds, const SkMatrix& m, const GrShape& shape, float strokeDevWidth, const SkRect& conservativeDevBounds, GrPaint&& paint) { // The path itself should have been cropped if larger than kPathCropThreshold. If it had a // stroke, that would have further inflated its draw bounds. SkASSERT(SkTMax(conservativeDevBounds.height(), conservativeDevBounds.width()) < GrCoverageCountingPathRenderer::kPathCropThreshold + GrCoverageCountingPathRenderer::kMaxBoundsInflationFromStroke*2 + 1); SkIRect shapeConservativeIBounds; conservativeDevBounds.roundOut(&shapeConservativeIBounds); SkIRect maskDevIBounds; if (!maskDevIBounds.intersect(clipIBounds, shapeConservativeIBounds)) { return nullptr; } GrOpMemoryPool* pool = context->priv().opMemoryPool(); return pool->allocate<GrCCDrawPathsOp>(m, shape, strokeDevWidth, shapeConservativeIBounds, maskDevIBounds, conservativeDevBounds, std::move(paint)); } GrCCDrawPathsOp::GrCCDrawPathsOp(const SkMatrix& m, const GrShape& shape, float strokeDevWidth, const SkIRect& shapeConservativeIBounds, const SkIRect& maskDevIBounds, const SkRect& conservativeDevBounds, GrPaint&& paint) : GrDrawOp(ClassID()) , fViewMatrixIfUsingLocalCoords(has_coord_transforms(paint) ? m : SkMatrix::I()) , fDraws(m, shape, strokeDevWidth, shapeConservativeIBounds, maskDevIBounds, paint.getColor4f()) , fProcessors(std::move(paint)) { // Paint must be moved after fetching its color above. SkDEBUGCODE(fBaseInstance = -1); // FIXME: intersect with clip bounds to (hopefully) improve batching. // (This is nontrivial due to assumptions in generating the octagon cover geometry.) this->setBounds(conservativeDevBounds, GrOp::HasAABloat::kYes, GrOp::IsZeroArea::kNo); } GrCCDrawPathsOp::~GrCCDrawPathsOp() { if (fOwningPerOpListPaths) { // Remove the list's dangling pointer to this Op before deleting it. fOwningPerOpListPaths->fDrawOps.remove(this); } } GrCCDrawPathsOp::SingleDraw::SingleDraw(const SkMatrix& m, const GrShape& shape, float strokeDevWidth, const SkIRect& shapeConservativeIBounds, const SkIRect& maskDevIBounds, const SkPMColor4f& color) : fMatrix(m) , fShape(shape) , fStrokeDevWidth(strokeDevWidth) , fShapeConservativeIBounds(shapeConservativeIBounds) , fMaskDevIBounds(maskDevIBounds) , fColor(color) { #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK if (fShape.hasUnstyledKey()) { // On AOSP we round view matrix translates to integer values for cachable paths. We do this // to match HWUI's cache hit ratio, which doesn't consider the matrix when caching paths. fMatrix.setTranslateX(SkScalarRoundToScalar(fMatrix.getTranslateX())); fMatrix.setTranslateY(SkScalarRoundToScalar(fMatrix.getTranslateY())); } #endif } GrProcessorSet::Analysis GrCCDrawPathsOp::finalize(const GrCaps& caps, const GrAppliedClip* clip, GrFSAAType fsaaType, GrClampType clampType) { SkASSERT(1 == fNumDraws); // There should only be one single path draw in this Op right now. return fDraws.head().finalize(caps, clip, fsaaType, clampType, &fProcessors); } GrProcessorSet::Analysis GrCCDrawPathsOp::SingleDraw::finalize( const GrCaps& caps, const GrAppliedClip* clip, GrFSAAType fsaaType, GrClampType clampType, GrProcessorSet* processors) { const GrProcessorSet::Analysis& analysis = processors->finalize( fColor, GrProcessorAnalysisCoverage::kSingleChannel, clip, &GrUserStencilSettings::kUnused, fsaaType, caps, clampType, &fColor); // Lines start looking jagged when they get thinner than 1px. For thin strokes it looks better // if we can convert them to hairline (i.e., inflate the stroke width to 1px), and instead // reduce the opacity to create the illusion of thin-ness. This strategy also helps reduce // artifacts from coverage dilation when there are self intersections. if (analysis.isCompatibleWithCoverageAsAlpha() && !fShape.style().strokeRec().isFillStyle() && fStrokeDevWidth < 1) { // Modifying the shape affects its cache key. The draw can't have a cache entry yet or else // our next step would invalidate it. SkASSERT(!fCacheEntry); SkASSERT(SkStrokeRec::kStroke_Style == fShape.style().strokeRec().getStyle()); SkPath path; fShape.asPath(&path); // Create a hairline version of our stroke. SkStrokeRec hairlineStroke = fShape.style().strokeRec(); hairlineStroke.setStrokeStyle(0); // How transparent does a 1px stroke have to be in order to appear as thin as the real one? float coverage = fStrokeDevWidth; fShape = GrShape(path, GrStyle(hairlineStroke, nullptr)); fStrokeDevWidth = 1; // fShapeConservativeIBounds already accounted for this possibility of inflating the stroke. fColor = fColor * coverage; } return analysis; } GrOp::CombineResult GrCCDrawPathsOp::onCombineIfPossible(GrOp* op, const GrCaps&) { GrCCDrawPathsOp* that = op->cast<GrCCDrawPathsOp>(); SkASSERT(fOwningPerOpListPaths); SkASSERT(fNumDraws); SkASSERT(!that->fOwningPerOpListPaths || that->fOwningPerOpListPaths == fOwningPerOpListPaths); SkASSERT(that->fNumDraws); if (fProcessors != that->fProcessors || fViewMatrixIfUsingLocalCoords != that->fViewMatrixIfUsingLocalCoords) { return CombineResult::kCannotCombine; } fDraws.append(std::move(that->fDraws), &fOwningPerOpListPaths->fAllocator); SkDEBUGCODE(fNumDraws += that->fNumDraws); SkDEBUGCODE(that->fNumDraws = 0); return CombineResult::kMerged; } void GrCCDrawPathsOp::addToOwningPerOpListPaths(sk_sp<GrCCPerOpListPaths> owningPerOpListPaths) { SkASSERT(1 == fNumDraws); SkASSERT(!fOwningPerOpListPaths); fOwningPerOpListPaths = std::move(owningPerOpListPaths); fOwningPerOpListPaths->fDrawOps.addToTail(this); } void GrCCDrawPathsOp::accountForOwnPaths(GrCCPathCache* pathCache, GrOnFlushResourceProvider* onFlushRP, GrCCPerFlushResourceSpecs* specs) { for (SingleDraw& draw : fDraws) { draw.accountForOwnPath(pathCache, onFlushRP, specs); } } void GrCCDrawPathsOp::SingleDraw::accountForOwnPath( GrCCPathCache* pathCache, GrOnFlushResourceProvider* onFlushRP, GrCCPerFlushResourceSpecs* specs) { using CoverageType = GrCCAtlas::CoverageType; SkPath path; fShape.asPath(&path); SkASSERT(!fCacheEntry); if (pathCache) { fCacheEntry = pathCache->find(onFlushRP, fShape, fMaskDevIBounds, fMatrix, &fCachedMaskShift); } if (fCacheEntry) { if (const GrCCCachedAtlas* cachedAtlas = fCacheEntry->cachedAtlas()) { SkASSERT(cachedAtlas->getOnFlushProxy()); if (CoverageType::kA8_LiteralCoverage == cachedAtlas->coverageType()) { ++specs->fNumCachedPaths; } else { // Suggest that this path be copied to a literal coverage atlas, to save memory. // (The client may decline this copy via DoCopiesToA8Coverage::kNo.) int idx = (fShape.style().strokeRec().isFillStyle()) ? GrCCPerFlushResourceSpecs::kFillIdx : GrCCPerFlushResourceSpecs::kStrokeIdx; ++specs->fNumCopiedPaths[idx]; specs->fCopyPathStats[idx].statPath(path); specs->fCopyAtlasSpecs.accountForSpace(fCacheEntry->width(), fCacheEntry->height()); fDoCopyToA8Coverage = true; } return; } if (this->shouldCachePathMask(onFlushRP->caps()->maxRenderTargetSize())) { fDoCachePathMask = true; // We don't cache partial masks; ensure the bounds include the entire path. fMaskDevIBounds = fShapeConservativeIBounds; } } // Plan on rendering this path in a new atlas. int idx = (fShape.style().strokeRec().isFillStyle()) ? GrCCPerFlushResourceSpecs::kFillIdx : GrCCPerFlushResourceSpecs::kStrokeIdx; ++specs->fNumRenderedPaths[idx]; specs->fRenderedPathStats[idx].statPath(path); specs->fRenderedAtlasSpecs.accountForSpace(fMaskDevIBounds.width(), fMaskDevIBounds.height()); } bool GrCCDrawPathsOp::SingleDraw::shouldCachePathMask(int maxRenderTargetSize) const { SkASSERT(fCacheEntry); SkASSERT(!fCacheEntry->cachedAtlas()); if (fCacheEntry->hitCount() <= 1) { return false; // Don't cache a path mask until at least its second hit. } int shapeMaxDimension = SkTMax(fShapeConservativeIBounds.height(), fShapeConservativeIBounds.width()); if (shapeMaxDimension > maxRenderTargetSize) { return false; // This path isn't cachable. } int64_t shapeArea = sk_64_mul(fShapeConservativeIBounds.height(), fShapeConservativeIBounds.width()); if (shapeArea < 100*100) { // If a path is small enough, we might as well try to render and cache the entire thing, no // matter how much of it is actually visible. return true; } // The hitRect should already be contained within the shape's bounds, but we still intersect it // because it's possible for edges very near pixel boundaries (e.g., 0.999999), to round out // inconsistently, depending on the integer translation values and fp32 precision. SkIRect hitRect = fCacheEntry->hitRect().makeOffset(fCachedMaskShift.x(), fCachedMaskShift.y()); hitRect.intersect(fShapeConservativeIBounds); // Render and cache the entire path mask if we see enough of it to justify rendering all the // pixels. Our criteria for "enough" is that we must have seen at least 50% of the path in the // past, and in this particular draw we must see at least 10% of it. int64_t hitArea = sk_64_mul(hitRect.height(), hitRect.width()); int64_t drawArea = sk_64_mul(fMaskDevIBounds.height(), fMaskDevIBounds.width()); return hitArea*2 >= shapeArea && drawArea*10 >= shapeArea; } void GrCCDrawPathsOp::setupResources( GrCCPathCache* pathCache, GrOnFlushResourceProvider* onFlushRP, GrCCPerFlushResources* resources, DoCopiesToA8Coverage doCopies) { SkASSERT(fNumDraws > 0); SkASSERT(-1 == fBaseInstance); fBaseInstance = resources->nextPathInstanceIdx(); for (SingleDraw& draw : fDraws) { draw.setupResources(pathCache, onFlushRP, resources, doCopies, this); } if (!fInstanceRanges.empty()) { fInstanceRanges.back().fEndInstanceIdx = resources->nextPathInstanceIdx(); } } void GrCCDrawPathsOp::SingleDraw::setupResources( GrCCPathCache* pathCache, GrOnFlushResourceProvider* onFlushRP, GrCCPerFlushResources* resources, DoCopiesToA8Coverage doCopies, GrCCDrawPathsOp* op) { using DoEvenOddFill = GrCCPathProcessor::DoEvenOddFill; SkPath path; fShape.asPath(&path); auto doEvenOddFill = DoEvenOddFill(fShape.style().strokeRec().isFillStyle() && SkPath::kEvenOdd_FillType == path.getFillType()); SkASSERT(SkPath::kEvenOdd_FillType == path.getFillType() || SkPath::kWinding_FillType == path.getFillType()); if (fCacheEntry) { // Does the path already exist in a cached atlas texture? if (fCacheEntry->cachedAtlas()) { SkASSERT(fCacheEntry->cachedAtlas()->getOnFlushProxy()); if (DoCopiesToA8Coverage::kYes == doCopies && fDoCopyToA8Coverage) { resources->upgradeEntryToLiteralCoverageAtlas(pathCache, onFlushRP, fCacheEntry.get(), doEvenOddFill); SkASSERT(fCacheEntry->cachedAtlas()); SkASSERT(GrCCAtlas::CoverageType::kA8_LiteralCoverage == fCacheEntry->cachedAtlas()->coverageType()); SkASSERT(fCacheEntry->cachedAtlas()->getOnFlushProxy()); } #if 0 // Simple color manipulation to visualize cached paths. fColor = (GrCCAtlas::CoverageType::kA8_LiteralCoverage == fCacheEntry->cachedAtlas()->coverageType()) ? SkPMColor4f{0,0,.25,.25} : SkPMColor4f{0,.25,0,.25}; #endif op->recordInstance(fCacheEntry->cachedAtlas()->getOnFlushProxy(), resources->nextPathInstanceIdx()); resources->appendDrawPathInstance().set(*fCacheEntry, fCachedMaskShift, SkPMColor4f_toFP16(fColor)); return; } } // Render the raw path into a coverage count atlas. renderShapeInAtlas() gives us two tight // bounding boxes: One in device space, as well as a second one rotated an additional 45 // degrees. The path vertex shader uses these two bounding boxes to generate an octagon that // circumscribes the path. SkRect devBounds, devBounds45; SkIRect devIBounds; SkIVector devToAtlasOffset; if (auto atlas = resources->renderShapeInAtlas( fMaskDevIBounds, fMatrix, fShape, fStrokeDevWidth, &devBounds, &devBounds45, &devIBounds, &devToAtlasOffset)) { op->recordInstance(atlas->textureProxy(), resources->nextPathInstanceIdx()); resources->appendDrawPathInstance().set(devBounds, devBounds45, devToAtlasOffset, SkPMColor4f_toFP16(fColor), doEvenOddFill); if (fDoCachePathMask) { SkASSERT(fCacheEntry); SkASSERT(!fCacheEntry->cachedAtlas()); SkASSERT(fShapeConservativeIBounds == fMaskDevIBounds); fCacheEntry->setCoverageCountAtlas(onFlushRP, atlas, devToAtlasOffset, devBounds, devBounds45, devIBounds, fCachedMaskShift); } } } inline void GrCCDrawPathsOp::recordInstance(GrTextureProxy* atlasProxy, int instanceIdx) { if (fInstanceRanges.empty()) { fInstanceRanges.push_back({atlasProxy, instanceIdx}); return; } if (fInstanceRanges.back().fAtlasProxy != atlasProxy) { fInstanceRanges.back().fEndInstanceIdx = instanceIdx; fInstanceRanges.push_back({atlasProxy, instanceIdx}); return; } } void GrCCDrawPathsOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) { SkASSERT(fOwningPerOpListPaths); const GrCCPerFlushResources* resources = fOwningPerOpListPaths->fFlushResources.get(); if (!resources) { return; // Setup failed. } GrPipeline::InitArgs initArgs; initArgs.fCaps = &flushState->caps(); initArgs.fResourceProvider = flushState->resourceProvider(); initArgs.fDstProxy = flushState->drawOpArgs().fDstProxy; auto clip = flushState->detachAppliedClip(); GrPipeline::FixedDynamicState fixedDynamicState(clip.scissorState().rect()); GrPipeline pipeline(initArgs, std::move(fProcessors), std::move(clip)); int baseInstance = fBaseInstance; SkASSERT(baseInstance >= 0); // Make sure setupResources() has been called. for (const InstanceRange& range : fInstanceRanges) { SkASSERT(range.fEndInstanceIdx > baseInstance); GrCCPathProcessor pathProc(range.fAtlasProxy, fViewMatrixIfUsingLocalCoords); GrTextureProxy* atlasProxy = range.fAtlasProxy; fixedDynamicState.fPrimitiveProcessorTextures = &atlasProxy; pathProc.drawPaths(flushState, pipeline, &fixedDynamicState, *resources, baseInstance, range.fEndInstanceIdx, this->bounds()); baseInstance = range.fEndInstanceIdx; } }