/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCCubicShader.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramBuilder.h" #include "glsl/GrGLSLVertexGeoBuilder.h" using Shader = GrCCCoverageProcessor::Shader; void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, const char* wind, const char** /*outHull4*/) const { // Find the cubic's power basis coefficients. s->codeAppendf("float2x4 C = float4x4(-1, 3, -3, 1, " " 3, -6, 3, 0, " "-3, 3, 0, 0, " " 1, 0, 0, 0) * transpose(%s);", pts); // Find the cubic's inflection function. s->codeAppend ("float D3 = +determinant(float2x2(C[0].yz, C[1].yz));"); s->codeAppend ("float D2 = -determinant(float2x2(C[0].xz, C[1].xz));"); s->codeAppend ("float D1 = +determinant(float2x2(C));"); // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us // from overflow while solving for roots and KLM functionals. s->codeAppend ("float Dmax = max(max(abs(D1), abs(D2)), abs(D3));"); s->codeAppend ("float norm;"); if (s->getProgramBuilder()->shaderCaps()->fpManipulationSupport()) { s->codeAppend ("int exp;"); s->codeAppend ("frexp(Dmax, exp);"); s->codeAppend ("norm = ldexp(1, 1 - exp);"); } else { s->codeAppend ("norm = 1/Dmax;"); // Dmax will not be 0 because we cull line cubics on CPU. } s->codeAppend ("D3 *= norm;"); s->codeAppend ("D2 *= norm;"); s->codeAppend ("D1 *= norm;"); // Calculate the KLM matrix. s->declareGlobal(fKLMMatrix); s->codeAppend ("float discr = 3*D2*D2 - 4*D1*D3;"); s->codeAppend ("float x = discr >= 0 ? 3 : 1;"); s->codeAppend ("float q = sqrt(x * abs(discr));"); s->codeAppend ("q = x*D2 + (D2 >= 0 ? q : -q);"); s->codeAppend ("float2 l, m;"); s->codeAppend ("l.ts = float2(q, 2*x * D1);"); s->codeAppend ("m.ts = float2(2, q) * (discr >= 0 ? float2(D3, 1) " ": float2(D2*D2 - D3*D1, D1));"); s->codeAppend ("float4 K;"); s->codeAppend ("float4 lm = l.sstt * m.stst;"); s->codeAppend ("K = float4(0, lm.x, -lm.y - lm.z, lm.w);"); s->codeAppend ("float4 L, M;"); s->codeAppend ("lm.yz += 2*lm.zy;"); s->codeAppend ("L = float4(-1,x,-x,1) * l.sstt * (discr >= 0 ? l.ssst * l.sttt : lm);"); s->codeAppend ("M = float4(-1,x,-x,1) * m.sstt * (discr >= 0 ? m.ssst * m.sttt : lm.xzyw);"); s->codeAppend ("int middlerow = abs(D2) > abs(D1) ? 2 : 1;"); s->codeAppend ("float3x3 CI = inverse(float3x3(C[0][0], C[0][middlerow], C[0][3], " "C[1][0], C[1][middlerow], C[1][3], " " 0, 0, 1));"); s->codeAppendf("%s = CI * float3x3(K[0], K[middlerow], K[3], " "L[0], L[middlerow], L[3], " "M[0], M[middlerow], M[3]);", fKLMMatrix.c_str()); // Evaluate the cubic at T=.5 for a mid-ish point. s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts); // Orient the KLM matrix so L & M are both positive on the side of the curve we wish to fill. s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));", fKLMMatrix.c_str(), fKLMMatrix.c_str()); s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, " "0, orientation[0], 0, " "0, 0, orientation[1]);", fKLMMatrix.c_str()); // Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0). s->declareGlobal(fEdgeDistanceEquation); s->codeAppendf("int edgeidx0 = %s > 0 ? 3 : 0;", wind); s->codeAppendf("float2 edgept0 = %s[edgeidx0];", pts); s->codeAppendf("float2 edgept1 = %s[3 - edgeidx0];", pts); Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str()); } void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code, const char* position, const char* coverage, const char* cornerCoverage) { fKLM_fEdge.reset(kFloat4_GrSLType, scope); varyingHandler->addVarying("klm_and_edge", &fKLM_fEdge); code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str()); // We give L & M both the same sign as wind, in order to pass this value to the fragment shader. // (Cubics are pre-chopped such that L & M do not change sign within any individual segment.) code->appendf("%s.xyz = klm * float3(1, %s, %s);", OutName(fKLM_fEdge), coverage, coverage); // coverage == wind on curves. code->appendf("%s.w = dot(float3(%s, 1), %s);", // Flat edge opposite the curve. OutName(fKLM_fEdge), position, fEdgeDistanceEquation.c_str()); fGradMatrix.reset(kFloat4_GrSLType, scope); varyingHandler->addVarying("grad_matrix", &fGradMatrix); code->appendf("%s.xy = 2*bloat * 3 * klm[0] * %s[0].xy;", OutName(fGradMatrix), fKLMMatrix.c_str()); code->appendf("%s.zw = -2*bloat * (klm[1] * %s[2].xy + klm[2] * %s[1].xy);", OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str()); if (cornerCoverage) { code->appendf("half hull_coverage; {"); this->calcHullCoverage(code, OutName(fKLM_fEdge), OutName(fGradMatrix), "hull_coverage"); code->appendf("}"); fCornerCoverage.reset(kHalf2_GrSLType, scope); varyingHandler->addVarying("corner_coverage", &fCornerCoverage); code->appendf("%s = half2(hull_coverage, 1) * %s;", OutName(fCornerCoverage), cornerCoverage); } } void GrCCCubicShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const { this->calcHullCoverage(&AccessCodeString(f), fKLM_fEdge.fsIn(), fGradMatrix.fsIn(), outputCoverage); // Wind is the sign of both L and/or M. Take the sign of whichever has the larger magnitude. // (In reality, either would be fine because we chop cubics with more than a half pixel of // padding around the L & M lines, so neither should approach zero.) f->codeAppend ("half wind = sign(half(l + m));"); f->codeAppendf("%s *= wind;", outputCoverage); if (fCornerCoverage.fsIn()) { f->codeAppendf("%s = %s.x * %s.y + %s;", // Attenuated corner coverage. outputCoverage, fCornerCoverage.fsIn(), fCornerCoverage.fsIn(), outputCoverage); } } void GrCCCubicShader::calcHullCoverage(SkString* code, const char* klmAndEdge, const char* gradMatrix, const char* outputCoverage) const { code->appendf("float k = %s.x, l = %s.y, m = %s.z;", klmAndEdge, klmAndEdge, klmAndEdge); code->append ("float f = k*k*k - l*m;"); code->appendf("float2 grad = %s.xy * k + %s.zw;", gradMatrix, gradMatrix); code->append ("float fwidth = abs(grad.x) + abs(grad.y);"); code->appendf("float curve_coverage = min(0.5 - f/fwidth, 1);"); // Flat edge opposite the curve. code->appendf("float edge_coverage = min(%s.w, 0);", klmAndEdge); // Total hull coverage. code->appendf("%s = max(half(curve_coverage + edge_coverage), 0);", outputCoverage); }