/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlitter.h" #include "SkEdge.h" #include "SkEdgeBuilder.h" #include "SkGeometry.h" #include "SkMacros.h" #include "SkPath.h" #include "SkQuadClipper.h" #include "SkRasterClip.h" #include "SkRectPriv.h" #include "SkRegion.h" #include "SkSafe32.h" #include "SkScanPriv.h" #include "SkTSort.h" #include "SkTemplates.h" #include <utility> #define kEDGE_HEAD_Y SK_MinS32 #define kEDGE_TAIL_Y SK_MaxS32 #ifdef SK_DEBUG static void validate_sort(const SkEdge* edge) { int y = kEDGE_HEAD_Y; while (edge->fFirstY != SK_MaxS32) { edge->validate(); SkASSERT(y <= edge->fFirstY); y = edge->fFirstY; edge = edge->fNext; } } #else #define validate_sort(edge) #endif static void insert_new_edges(SkEdge* newEdge, int curr_y) { if (newEdge->fFirstY != curr_y) { return; } SkEdge* prev = newEdge->fPrev; if (prev->fX <= newEdge->fX) { return; } // find first x pos to insert SkEdge* start = backward_insert_start(prev, newEdge->fX); // insert the lot, fixing up the links as we go do { SkEdge* next = newEdge->fNext; do { if (start->fNext == newEdge) { goto nextEdge; } SkEdge* after = start->fNext; if (after->fX >= newEdge->fX) { break; } start = after; } while (true); remove_edge(newEdge); insert_edge_after(newEdge, start); nextEdge: start = newEdge; newEdge = next; } while (newEdge->fFirstY == curr_y); } #ifdef SK_DEBUG static void validate_edges_for_y(const SkEdge* edge, int curr_y) { while (edge->fFirstY <= curr_y) { SkASSERT(edge->fPrev && edge->fNext); SkASSERT(edge->fPrev->fNext == edge); SkASSERT(edge->fNext->fPrev == edge); SkASSERT(edge->fFirstY <= edge->fLastY); SkASSERT(edge->fPrev->fX <= edge->fX); edge = edge->fNext; } } #else #define validate_edges_for_y(edge, curr_y) #endif #if defined _WIN32 // disable warning : local variable used without having been initialized #pragma warning ( push ) #pragma warning ( disable : 4701 ) #endif typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline); #define PREPOST_START true #define PREPOST_END false static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType, SkBlitter* blitter, int start_y, int stop_y, PrePostProc proc, int rightClip) { validate_sort(prevHead->fNext); int curr_y = start_y; // returns 1 for evenodd, -1 for winding, regardless of inverse-ness int windingMask = (fillType & 1) ? 1 : -1; for (;;) { int w = 0; int left SK_INIT_TO_AVOID_WARNING; SkEdge* currE = prevHead->fNext; SkFixed prevX = prevHead->fX; validate_edges_for_y(currE, curr_y); if (proc) { proc(blitter, curr_y, PREPOST_START); // pre-proc } while (currE->fFirstY <= curr_y) { SkASSERT(currE->fLastY >= curr_y); int x = SkFixedRoundToInt(currE->fX); if ((w & windingMask) == 0) { // we're starting interval left = x; } w += currE->fWinding; if ((w & windingMask) == 0) { // we finished an interval int width = x - left; SkASSERT(width >= 0); if (width > 0) { blitter->blitH(left, curr_y, width); } } SkEdge* next = currE->fNext; SkFixed newX; if (currE->fLastY == curr_y) { // are we done with this edge? if (currE->fCurveCount > 0) { if (((SkQuadraticEdge*)currE)->updateQuadratic()) { newX = currE->fX; goto NEXT_X; } } else if (currE->fCurveCount < 0) { if (((SkCubicEdge*)currE)->updateCubic()) { SkASSERT(currE->fFirstY == curr_y + 1); newX = currE->fX; goto NEXT_X; } } remove_edge(currE); } else { SkASSERT(currE->fLastY > curr_y); newX = currE->fX + currE->fDX; currE->fX = newX; NEXT_X: if (newX < prevX) { // ripple currE backwards until it is x-sorted backward_insert_edge_based_on_x(currE); } else { prevX = newX; } } currE = next; SkASSERT(currE); } if ((w & windingMask) != 0) { // was our right-edge culled away? int width = rightClip - left; if (width > 0) { blitter->blitH(left, curr_y, width); } } if (proc) { proc(blitter, curr_y, PREPOST_END); // post-proc } curr_y += 1; if (curr_y >= stop_y) { break; } // now currE points to the first edge with a Yint larger than curr_y insert_new_edges(currE, curr_y); } } // return true if we're NOT done with this edge static bool update_edge(SkEdge* edge, int last_y) { SkASSERT(edge->fLastY >= last_y); if (last_y == edge->fLastY) { if (edge->fCurveCount < 0) { if (((SkCubicEdge*)edge)->updateCubic()) { SkASSERT(edge->fFirstY == last_y + 1); return true; } } else if (edge->fCurveCount > 0) { if (((SkQuadraticEdge*)edge)->updateQuadratic()) { SkASSERT(edge->fFirstY == last_y + 1); return true; } } return false; } return true; } // Unexpected conditions for which we need to return #define ASSERT_RETURN(cond) \ do { \ if (!(cond)) { \ SkASSERT(false); \ return; \ } \ } while (0) // Needs Y to only change once (looser than convex in X) static void walk_simple_edges(SkEdge* prevHead, SkBlitter* blitter, int start_y, int stop_y) { validate_sort(prevHead->fNext); SkEdge* leftE = prevHead->fNext; SkEdge* riteE = leftE->fNext; SkEdge* currE = riteE->fNext; // our edge choppers for curves can result in the initial edges // not lining up, so we take the max. int local_top = SkMax32(leftE->fFirstY, riteE->fFirstY); ASSERT_RETURN(local_top >= start_y); while (local_top < stop_y) { SkASSERT(leftE->fFirstY <= stop_y); SkASSERT(riteE->fFirstY <= stop_y); int local_bot = SkMin32(leftE->fLastY, riteE->fLastY); local_bot = SkMin32(local_bot, stop_y - 1); ASSERT_RETURN(local_top <= local_bot); SkFixed left = leftE->fX; SkFixed dLeft = leftE->fDX; SkFixed rite = riteE->fX; SkFixed dRite = riteE->fDX; int count = local_bot - local_top; ASSERT_RETURN(count >= 0); if (0 == (dLeft | dRite)) { int L = SkFixedRoundToInt(left); int R = SkFixedRoundToInt(rite); if (L > R) { std::swap(L, R); } if (L < R) { count += 1; blitter->blitRect(L, local_top, R - L, count); } local_top = local_bot + 1; } else { do { int L = SkFixedRoundToInt(left); int R = SkFixedRoundToInt(rite); if (L > R) { std::swap(L, R); } if (L < R) { blitter->blitH(L, local_top, R - L); } // Either/both of these might overflow, since we perform this step even if // (later) we determine that we are done with the edge, and so the computed // left or rite edge will not be used (see update_edge). Use this helper to // silence UBSAN when we perform the add. left = Sk32_can_overflow_add(left, dLeft); rite = Sk32_can_overflow_add(rite, dRite); local_top += 1; } while (--count >= 0); } leftE->fX = left; riteE->fX = rite; if (!update_edge(leftE, local_bot)) { if (currE->fFirstY >= stop_y) { return; // we're done } leftE = currE; currE = currE->fNext; ASSERT_RETURN(leftE->fFirstY == local_top); } if (!update_edge(riteE, local_bot)) { if (currE->fFirstY >= stop_y) { return; // we're done } riteE = currE; currE = currE->fNext; ASSERT_RETURN(riteE->fFirstY == local_top); } } } /////////////////////////////////////////////////////////////////////////////// // this guy overrides blitH, and will call its proxy blitter with the inverse // of the spans it is given (clipped to the left/right of the cliprect) // // used to implement inverse filltypes on paths // class InverseBlitter : public SkBlitter { public: void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) { fBlitter = blitter; fFirstX = clip.fLeft << shift; fLastX = clip.fRight << shift; } void prepost(int y, bool isStart) { if (isStart) { fPrevX = fFirstX; } else { int invWidth = fLastX - fPrevX; if (invWidth > 0) { fBlitter->blitH(fPrevX, y, invWidth); } } } // overrides void blitH(int x, int y, int width) override { int invWidth = x - fPrevX; if (invWidth > 0) { fBlitter->blitH(fPrevX, y, invWidth); } fPrevX = x + width; } // we do not expect to get called with these entrypoints void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) override { SkDEBUGFAIL("blitAntiH unexpected"); } void blitV(int x, int y, int height, SkAlpha alpha) override { SkDEBUGFAIL("blitV unexpected"); } void blitRect(int x, int y, int width, int height) override { SkDEBUGFAIL("blitRect unexpected"); } void blitMask(const SkMask&, const SkIRect& clip) override { SkDEBUGFAIL("blitMask unexpected"); } const SkPixmap* justAnOpaqueColor(uint32_t* value) override { SkDEBUGFAIL("justAnOpaqueColor unexpected"); return nullptr; } private: SkBlitter* fBlitter; int fFirstX, fLastX, fPrevX; }; static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) { ((InverseBlitter*)blitter)->prepost(y, isStart); } /////////////////////////////////////////////////////////////////////////////// #if defined _WIN32 #pragma warning ( pop ) #endif static bool operator<(const SkEdge& a, const SkEdge& b) { int valuea = a.fFirstY; int valueb = b.fFirstY; if (valuea == valueb) { valuea = a.fX; valueb = b.fX; } return valuea < valueb; } static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last) { SkTQSort(list, list + count - 1); // now make the edges linked in sorted order for (int i = 1; i < count; i++) { list[i - 1]->fNext = list[i]; list[i]->fPrev = list[i - 1]; } *last = list[count - 1]; return list[0]; } // clipRect has not been shifted up void sk_fill_path(const SkPath& path, const SkIRect& clipRect, SkBlitter* blitter, int start_y, int stop_y, int shiftEdgesUp, bool pathContainedInClip) { SkASSERT(blitter); SkIRect shiftedClip = clipRect; shiftedClip.fLeft = SkLeftShift(shiftedClip.fLeft, shiftEdgesUp); shiftedClip.fRight = SkLeftShift(shiftedClip.fRight, shiftEdgesUp); shiftedClip.fTop = SkLeftShift(shiftedClip.fTop, shiftEdgesUp); shiftedClip.fBottom = SkLeftShift(shiftedClip.fBottom, shiftEdgesUp); SkBasicEdgeBuilder builder(shiftEdgesUp); int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &shiftedClip); SkEdge** list = builder.edgeList(); if (0 == count) { if (path.isInverseFillType()) { /* * Since we are in inverse-fill, our caller has already drawn above * our top (start_y) and will draw below our bottom (stop_y). Thus * we need to restrict our drawing to the intersection of the clip * and those two limits. */ SkIRect rect = clipRect; if (rect.fTop < start_y) { rect.fTop = start_y; } if (rect.fBottom > stop_y) { rect.fBottom = stop_y; } if (!rect.isEmpty()) { blitter->blitRect(rect.fLeft << shiftEdgesUp, rect.fTop << shiftEdgesUp, rect.width() << shiftEdgesUp, rect.height() << shiftEdgesUp); } } return; } SkEdge headEdge, tailEdge, *last; // this returns the first and last edge after they're sorted into a dlink list SkEdge* edge = sort_edges(list, count, &last); headEdge.fPrev = nullptr; headEdge.fNext = edge; headEdge.fFirstY = kEDGE_HEAD_Y; headEdge.fX = SK_MinS32; edge->fPrev = &headEdge; tailEdge.fPrev = last; tailEdge.fNext = nullptr; tailEdge.fFirstY = kEDGE_TAIL_Y; last->fNext = &tailEdge; // now edge is the head of the sorted linklist start_y = SkLeftShift(start_y, shiftEdgesUp); stop_y = SkLeftShift(stop_y, shiftEdgesUp); if (!pathContainedInClip && start_y < shiftedClip.fTop) { start_y = shiftedClip.fTop; } if (!pathContainedInClip && stop_y > shiftedClip.fBottom) { stop_y = shiftedClip.fBottom; } InverseBlitter ib; PrePostProc proc = nullptr; if (path.isInverseFillType()) { ib.setBlitter(blitter, clipRect, shiftEdgesUp); blitter = &ib; proc = PrePostInverseBlitterProc; } // count >= 2 is required as the convex walker does not handle missing right edges if (path.isConvex() && (nullptr == proc) && count >= 2) { walk_simple_edges(&headEdge, blitter, start_y, stop_y); } else { walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc, shiftedClip.right()); } } void sk_blit_above(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) { const SkIRect& cr = clip.getBounds(); SkIRect tmp; tmp.fLeft = cr.fLeft; tmp.fRight = cr.fRight; tmp.fTop = cr.fTop; tmp.fBottom = ir.fTop; if (!tmp.isEmpty()) { blitter->blitRectRegion(tmp, clip); } } void sk_blit_below(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) { const SkIRect& cr = clip.getBounds(); SkIRect tmp; tmp.fLeft = cr.fLeft; tmp.fRight = cr.fRight; tmp.fTop = ir.fBottom; tmp.fBottom = cr.fBottom; if (!tmp.isEmpty()) { blitter->blitRectRegion(tmp, clip); } } /////////////////////////////////////////////////////////////////////////////// /** * If the caller is drawing an inverse-fill path, then it pass true for * skipRejectTest, so we don't abort drawing just because the src bounds (ir) * is outside of the clip. */ SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip, const SkIRect& ir, bool skipRejectTest, bool irPreClipped) { fBlitter = nullptr; // null means blit nothing fClipRect = nullptr; if (clip) { fClipRect = &clip->getBounds(); if (!skipRejectTest && !SkIRect::Intersects(*fClipRect, ir)) { // completely clipped out return; } if (clip->isRect()) { if (!irPreClipped && fClipRect->contains(ir)) { #ifdef SK_DEBUG fRectClipCheckBlitter.init(blitter, *fClipRect); blitter = &fRectClipCheckBlitter; #endif fClipRect = nullptr; } else { // only need a wrapper blitter if we're horizontally clipped if (irPreClipped || fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight) { fRectBlitter.init(blitter, *fClipRect); blitter = &fRectBlitter; } else { #ifdef SK_DEBUG fRectClipCheckBlitter.init(blitter, *fClipRect); blitter = &fRectClipCheckBlitter; #endif } } } else { fRgnBlitter.init(blitter, clip); blitter = &fRgnBlitter; } } fBlitter = blitter; } /////////////////////////////////////////////////////////////////////////////// static bool clip_to_limit(const SkRegion& orig, SkRegion* reduced) { // need to limit coordinates such that the width/height of our rect can be represented // in SkFixed (16.16). See skbug.com/7998 const int32_t limit = 32767 >> 1; SkIRect limitR; limitR.set(-limit, -limit, limit, limit); if (limitR.contains(orig.getBounds())) { return false; } reduced->op(orig, limitR, SkRegion::kIntersect_Op); return true; } // Bias used for conservative rounding of float rects to int rects, to nudge the irects a little // larger, so we don't "think" a path's bounds are inside a clip, when (due to numeric drift in // the scan-converter) we might walk beyond the predicted limits. // // This value has been determined trial and error: pick the smallest value (after the 0.5) that // fixes any problematic cases (e.g. crbug.com/844457) // NOTE: cubics appear to be the main reason for needing this slop. If we could (perhaps) have a // more accurate walker for cubics, we may be able to reduce this fudge factor. static const double kConservativeRoundBias = 0.5 + 1.5 / SK_FDot6One; /** * Round the value down. This is used to round the top and left of a rectangle, * and corresponds to the way the scan converter treats the top and left edges. * It has a slight bias to make the "rounded" int smaller than a normal round, to create a more * conservative int-bounds (larger) from a float rect. */ static inline int round_down_to_int(SkScalar x) { double xx = x; xx -= kConservativeRoundBias; return sk_double_saturate2int(ceil(xx)); } /** * Round the value up. This is used to round the right and bottom of a rectangle. * It has a slight bias to make the "rounded" int smaller than a normal round, to create a more * conservative int-bounds (larger) from a float rect. */ static inline int round_up_to_int(SkScalar x) { double xx = x; xx += kConservativeRoundBias; return sk_double_saturate2int(floor(xx)); } /* * Conservative rounding function, which effectively nudges the int-rect to be slightly larger * than SkRect::round() might have produced. This is a safety-net for the scan-converter, which * inspects the returned int-rect, and may disable clipping (for speed) if it thinks all of the * edges will fit inside the clip's bounds. The scan-converter introduces slight numeric errors * due to accumulated += of the slope, so this function is used to return a conservatively large * int-bounds, and thus we will only disable clipping if we're sure the edges will stay in-bounds. */ static SkIRect conservative_round_to_int(const SkRect& src) { return { round_down_to_int(src.fLeft), round_down_to_int(src.fTop), round_up_to_int(src.fRight), round_up_to_int(src.fBottom), }; } void SkScan::FillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter) { if (origClip.isEmpty()) { return; } // Our edges are fixed-point, and don't like the bounds of the clip to // exceed that. Here we trim the clip just so we don't overflow later on const SkRegion* clipPtr = &origClip; SkRegion finiteClip; if (clip_to_limit(origClip, &finiteClip)) { if (finiteClip.isEmpty()) { return; } clipPtr = &finiteClip; } // don't reference "origClip" any more, just use clipPtr SkRect bounds = path.getBounds(); bool irPreClipped = false; if (!SkRectPriv::MakeLargeS32().contains(bounds)) { if (!bounds.intersect(SkRectPriv::MakeLargeS32())) { bounds.setEmpty(); } irPreClipped = true; } SkIRect ir = conservative_round_to_int(bounds); if (ir.isEmpty()) { if (path.isInverseFillType()) { blitter->blitRegion(*clipPtr); } return; } SkScanClipper clipper(blitter, clipPtr, ir, path.isInverseFillType(), irPreClipped); blitter = clipper.getBlitter(); if (blitter) { // we have to keep our calls to blitter in sorted order, so we // must blit the above section first, then the middle, then the bottom. if (path.isInverseFillType()) { sk_blit_above(blitter, ir, *clipPtr); } SkASSERT(clipper.getClipRect() == nullptr || *clipper.getClipRect() == clipPtr->getBounds()); sk_fill_path(path, clipPtr->getBounds(), blitter, ir.fTop, ir.fBottom, 0, clipper.getClipRect() == nullptr); if (path.isInverseFillType()) { sk_blit_below(blitter, ir, *clipPtr); } } else { // what does it mean to not have a blitter if path.isInverseFillType??? } } void SkScan::FillPath(const SkPath& path, const SkIRect& ir, SkBlitter* blitter) { SkRegion rgn(ir); FillPath(path, rgn, blitter); } /////////////////////////////////////////////////////////////////////////////// static int build_tri_edges(SkEdge edge[], const SkPoint pts[], const SkIRect* clipRect, SkEdge* list[]) { SkEdge** start = list; if (edge->setLine(pts[0], pts[1], clipRect, 0)) { *list++ = edge; edge = (SkEdge*)((char*)edge + sizeof(SkEdge)); } if (edge->setLine(pts[1], pts[2], clipRect, 0)) { *list++ = edge; edge = (SkEdge*)((char*)edge + sizeof(SkEdge)); } if (edge->setLine(pts[2], pts[0], clipRect, 0)) { *list++ = edge; } return (int)(list - start); } static void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect, SkBlitter* blitter, const SkIRect& ir) { SkASSERT(pts && blitter); SkEdge edgeStorage[3]; SkEdge* list[3]; int count = build_tri_edges(edgeStorage, pts, clipRect, list); if (count < 2) { return; } SkEdge headEdge, tailEdge, *last; // this returns the first and last edge after they're sorted into a dlink list SkEdge* edge = sort_edges(list, count, &last); headEdge.fPrev = nullptr; headEdge.fNext = edge; headEdge.fFirstY = kEDGE_HEAD_Y; headEdge.fX = SK_MinS32; edge->fPrev = &headEdge; tailEdge.fPrev = last; tailEdge.fNext = nullptr; tailEdge.fFirstY = kEDGE_TAIL_Y; last->fNext = &tailEdge; // now edge is the head of the sorted linklist int stop_y = ir.fBottom; if (clipRect && stop_y > clipRect->fBottom) { stop_y = clipRect->fBottom; } int start_y = ir.fTop; if (clipRect && start_y < clipRect->fTop) { start_y = clipRect->fTop; } walk_simple_edges(&headEdge, blitter, start_y, stop_y); } void SkScan::FillTriangle(const SkPoint pts[], const SkRasterClip& clip, SkBlitter* blitter) { if (clip.isEmpty()) { return; } SkRect r; r.set(pts, 3); // If r is too large (larger than can easily fit in SkFixed) then we need perform geometric // clipping. This is a bit of work, so we just call the general FillPath() to handle it. // Use FixedMax/2 as the limit so we can subtract two edges and still store that in Fixed. const SkScalar limit = SK_MaxS16 >> 1; if (!SkRect::MakeLTRB(-limit, -limit, limit, limit).contains(r)) { SkPath path; path.addPoly(pts, 3, false); FillPath(path, clip, blitter); return; } SkIRect ir = conservative_round_to_int(r); if (ir.isEmpty() || !SkIRect::Intersects(ir, clip.getBounds())) { return; } SkAAClipBlitterWrapper wrap; const SkRegion* clipRgn; if (clip.isBW()) { clipRgn = &clip.bwRgn(); } else { wrap.init(clip, blitter); clipRgn = &wrap.getRgn(); blitter = wrap.getBlitter(); } SkScanClipper clipper(blitter, clipRgn, ir); blitter = clipper.getBlitter(); if (blitter) { sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir); } }