/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkMathPriv.h" #include "SkPointPriv.h" /////////////////////////////////////////////////////////////////////////////// void SkPoint::scale(SkScalar scale, SkPoint* dst) const { SkASSERT(dst); dst->set(fX * scale, fY * scale); } bool SkPoint::normalize() { return this->setLength(fX, fY, SK_Scalar1); } bool SkPoint::setNormalize(SkScalar x, SkScalar y) { return this->setLength(x, y, SK_Scalar1); } bool SkPoint::setLength(SkScalar length) { return this->setLength(fX, fY, length); } /* * We have to worry about 2 tricky conditions: * 1. underflow of mag2 (compared against nearlyzero^2) * 2. overflow of mag2 (compared w/ isfinite) * * If we underflow, we return false. If we overflow, we compute again using * doubles, which is much slower (3x in a desktop test) but will not overflow. */ template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length, float* orig_length = nullptr) { SkASSERT(!use_rsqrt || (orig_length == nullptr)); // our mag2 step overflowed to infinity, so use doubles instead. // much slower, but needed when x or y are very large, other wise we // divide by inf. and return (0,0) vector. double xx = x; double yy = y; double dmag = sqrt(xx * xx + yy * yy); double dscale = sk_ieee_double_divide(length, dmag); x *= dscale; y *= dscale; // check if we're not finite, or we're zero-length if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) { pt->set(0, 0); return false; } float mag = 0; if (orig_length) { mag = sk_double_to_float(dmag); } pt->set(x, y); if (orig_length) { *orig_length = mag; } return true; } SkScalar SkPoint::Normalize(SkPoint* pt) { float mag; if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) { return mag; } return 0; } SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { float mag2 = dx * dx + dy * dy; if (SkScalarIsFinite(mag2)) { return sk_float_sqrt(mag2); } else { double xx = dx; double yy = dy; return sk_double_to_float(sqrt(xx * xx + yy * yy)); } } bool SkPoint::setLength(float x, float y, float length) { return set_point_length<false>(this, x, y, length); } bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) { return set_point_length<true>(pt, pt->fX, pt->fY, length); } /////////////////////////////////////////////////////////////////////////////// SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a, const SkPoint& b, Side* side) { SkVector u = b - a; SkVector v = pt - a; SkScalar uLengthSqd = LengthSqd(u); SkScalar det = u.cross(v); if (side) { SkASSERT(-1 == kLeft_Side && 0 == kOn_Side && 1 == kRight_Side); *side = (Side) SkScalarSignAsInt(det); } SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); temp *= det; // It's possible we have a degenerate line vector, or we're so far away it looks degenerate // In this case, return squared distance to point A. if (!SkScalarIsFinite(temp)) { return LengthSqd(v); } return temp; } SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a, const SkPoint& b) { // See comments to distanceToLineBetweenSqd. If the projection of c onto // u is between a and b then this returns the same result as that // function. Otherwise, it returns the distance to the closer of a and // b. Let the projection of v onto u be v'. There are three cases: // 1. v' points opposite to u. c is not between a and b and is closer // to a than b. // 2. v' points along u and has magnitude less than y. c is between // a and b and the distance to the segment is the same as distance // to the line ab. // 3. v' points along u and has greater magnitude than u. c is not // not between a and b and is closer to b than a. // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to // avoid a sqrt to compute |u|. SkVector u = b - a; SkVector v = pt - a; SkScalar uLengthSqd = LengthSqd(u); SkScalar uDotV = SkPoint::DotProduct(u, v); // closest point is point A if (uDotV <= 0) { return LengthSqd(v); // closest point is point B } else if (uDotV > uLengthSqd) { return DistanceToSqd(b, pt); // closest point is inside segment } else { SkScalar det = u.cross(v); SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); temp *= det; // It's possible we have a degenerate segment, or we're so far away it looks degenerate // In this case, return squared distance to point A. if (!SkScalarIsFinite(temp)) { return LengthSqd(v); } return temp; } }