/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * The following code is based on the description in RFC 1321. * http://www.ietf.org/rfc/rfc1321.txt */ //The following macros can be defined to affect the MD5 code generated. //SK_MD5_CLEAR_DATA causes all intermediate state to be overwritten with 0's. //SK_CPU_LENDIAN allows 32 bit <=> 8 bit conversions without copies (if alligned). //SK_CPU_FAST_UNALIGNED_ACCESS allows 32 bit <=> 8 bit conversions without copies if SK_CPU_LENDIAN. #include "SkMD5.h" #include <string.h> /** MD5 basic transformation. Transforms state based on block. */ static void transform(uint32_t state[4], const uint8_t block[64]); /** Encodes input into output (4 little endian 32 bit values). */ static void encode(uint8_t output[16], const uint32_t input[4]); /** Encodes input into output (little endian 64 bit value). */ static void encode(uint8_t output[8], const uint64_t input); /** Decodes input (4 little endian 32 bit values) into storage, if required. */ static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]); SkMD5::SkMD5() : byteCount(0) { // These are magic numbers from the specification. this->state[0] = 0x67452301; this->state[1] = 0xefcdab89; this->state[2] = 0x98badcfe; this->state[3] = 0x10325476; } bool SkMD5::write(const void* buf, size_t inputLength) { const uint8_t* input = reinterpret_cast<const uint8_t*>(buf); unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); unsigned int bufferAvailable = 64 - bufferIndex; unsigned int inputIndex; if (inputLength >= bufferAvailable) { if (bufferIndex) { memcpy(&this->buffer[bufferIndex], input, bufferAvailable); transform(this->state, this->buffer); inputIndex = bufferAvailable; } else { inputIndex = 0; } for (; inputIndex + 63 < inputLength; inputIndex += 64) { transform(this->state, &input[inputIndex]); } bufferIndex = 0; } else { inputIndex = 0; } memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); this->byteCount += inputLength; return true; } void SkMD5::finish(Digest& digest) { // Get the number of bits before padding. uint8_t bits[8]; encode(bits, this->byteCount << 3); // Pad out to 56 mod 64. unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); static uint8_t PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; (void)this->write(PADDING, paddingLength); // Append length (length before padding, will cause final update). (void)this->write(bits, 8); // Write out digest. encode(digest.data, this->state); #if defined(SK_MD5_CLEAR_DATA) // Clear state. memset(this, 0, sizeof(*this)); #endif } struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { //return (x & y) | ((~x) & z); return ((y ^ z) & x) ^ z; //equivelent but faster }}; struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { return (x & z) | (y & (~z)); //return ((x ^ y) & z) ^ y; //equivelent but slower }}; struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { return x ^ y ^ z; }}; struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { return y ^ (x | (~z)); }}; /** Rotates x left n bits. */ static inline uint32_t rotate_left(uint32_t x, uint8_t n) { return (x << n) | (x >> (32 - n)); } template <typename T> static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d, uint32_t x, uint8_t s, uint32_t t) { a = b + rotate_left(a + operation(b, c, d) + x + t, s); } static void transform(uint32_t state[4], const uint8_t block[64]) { uint32_t a = state[0], b = state[1], c = state[2], d = state[3]; uint32_t storage[16]; const uint32_t* X = decode(storage, block); // Round 1 operation(F(), a, b, c, d, X[ 0], 7, 0xd76aa478); // 1 operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2 operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3 operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4 operation(F(), a, b, c, d, X[ 4], 7, 0xf57c0faf); // 5 operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6 operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7 operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8 operation(F(), a, b, c, d, X[ 8], 7, 0x698098d8); // 9 operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10 operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11 operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12 operation(F(), a, b, c, d, X[12], 7, 0x6b901122); // 13 operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14 operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15 operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16 // Round 2 operation(G(), a, b, c, d, X[ 1], 5, 0xf61e2562); // 17 operation(G(), d, a, b, c, X[ 6], 9, 0xc040b340); // 18 operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19 operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20 operation(G(), a, b, c, d, X[ 5], 5, 0xd62f105d); // 21 operation(G(), d, a, b, c, X[10], 9, 0x2441453); // 22 operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23 operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24 operation(G(), a, b, c, d, X[ 9], 5, 0x21e1cde6); // 25 operation(G(), d, a, b, c, X[14], 9, 0xc33707d6); // 26 operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27 operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28 operation(G(), a, b, c, d, X[13], 5, 0xa9e3e905); // 29 operation(G(), d, a, b, c, X[ 2], 9, 0xfcefa3f8); // 30 operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31 operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32 // Round 3 operation(H(), a, b, c, d, X[ 5], 4, 0xfffa3942); // 33 operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34 operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35 operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36 operation(H(), a, b, c, d, X[ 1], 4, 0xa4beea44); // 37 operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38 operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39 operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40 operation(H(), a, b, c, d, X[13], 4, 0x289b7ec6); // 41 operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42 operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43 operation(H(), b, c, d, a, X[ 6], 23, 0x4881d05); // 44 operation(H(), a, b, c, d, X[ 9], 4, 0xd9d4d039); // 45 operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46 operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47 operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48 // Round 4 operation(I(), a, b, c, d, X[ 0], 6, 0xf4292244); // 49 operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50 operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51 operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52 operation(I(), a, b, c, d, X[12], 6, 0x655b59c3); // 53 operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54 operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55 operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56 operation(I(), a, b, c, d, X[ 8], 6, 0x6fa87e4f); // 57 operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58 operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59 operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60 operation(I(), a, b, c, d, X[ 4], 6, 0xf7537e82); // 61 operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62 operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63 operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64 state[0] += a; state[1] += b; state[2] += c; state[3] += d; #if defined(SK_MD5_CLEAR_DATA) // Clear sensitive information. if (X == &storage) { memset(storage, 0, sizeof(storage)); } #endif } static void encode(uint8_t output[16], const uint32_t input[4]) { for (size_t i = 0, j = 0; i < 4; i++, j += 4) { output[j ] = (uint8_t) (input[i] & 0xff); output[j+1] = (uint8_t)((input[i] >> 8) & 0xff); output[j+2] = (uint8_t)((input[i] >> 16) & 0xff); output[j+3] = (uint8_t)((input[i] >> 24) & 0xff); } } static void encode(uint8_t output[8], const uint64_t input) { output[0] = (uint8_t) (input & 0xff); output[1] = (uint8_t)((input >> 8) & 0xff); output[2] = (uint8_t)((input >> 16) & 0xff); output[3] = (uint8_t)((input >> 24) & 0xff); output[4] = (uint8_t)((input >> 32) & 0xff); output[5] = (uint8_t)((input >> 40) & 0xff); output[6] = (uint8_t)((input >> 48) & 0xff); output[7] = (uint8_t)((input >> 56) & 0xff); } static inline bool is_aligned(const void *pointer, size_t byte_count) { return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0; } static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) { #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS) return reinterpret_cast<const uint32_t*>(input); #else #if defined(SK_CPU_LENDIAN) if (is_aligned(input, 4)) { return reinterpret_cast<const uint32_t*>(input); } #endif for (size_t i = 0, j = 0; j < 64; i++, j += 4) { storage[i] = ((uint32_t)input[j ]) | (((uint32_t)input[j+1]) << 8) | (((uint32_t)input[j+2]) << 16) | (((uint32_t)input[j+3]) << 24); } return storage; #endif }