/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlitter.h" #include "SkAntiRun.h" #include "SkArenaAlloc.h" #include "SkColor.h" #include "SkColorData.h" #include "SkColorFilter.h" #include "SkMask.h" #include "SkMaskFilterBase.h" #include "SkPaintPriv.h" #include "SkReadBuffer.h" #include "SkRegionPriv.h" #include "SkShaderBase.h" #include "SkString.h" #include "SkTLazy.h" #include "SkTo.h" #include "SkUtils.h" #include "SkWriteBuffer.h" #include "SkXfermodeInterpretation.h" SkBlitter::~SkBlitter() {} bool SkBlitter::isNullBlitter() const { return false; } const SkPixmap* SkBlitter::justAnOpaqueColor(uint32_t* value) { return nullptr; } /* void SkBlitter::blitH(int x, int y, int width) { SkDEBUGFAIL("unimplemented"); } void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { SkDEBUGFAIL("unimplemented"); } */ inline static SkAlpha ScalarToAlpha(SkScalar a) { SkAlpha alpha = (SkAlpha)(a * 255); return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha; } void SkBlitter::blitFatAntiRect(const SkRect& rect) { SkIRect bounds = rect.roundOut(); SkASSERT(bounds.width() >= 3); // skbug.com/7813 // To ensure consistency of the threaded backend (a rect that's considered fat in the init-once // phase must also be considered fat in the draw phase), we have to deal with rects with small // heights because the horizontal tiling in the threaded backend may change the height. // // This also implies that we cannot do vertical tiling unless we can blit any rect (not just the // fat one.) if (bounds.height() == 0) { return; } int runSize = bounds.width() + 1; // +1 so we can set runs[bounds.width()] = 0 void* storage = this->allocBlitMemory(runSize * (sizeof(int16_t) + sizeof(SkAlpha))); int16_t* runs = reinterpret_cast<int16_t*>(storage); SkAlpha* alphas = reinterpret_cast<SkAlpha*>(runs + runSize); runs[0] = 1; runs[1] = bounds.width() - 2; runs[bounds.width() - 1] = 1; runs[bounds.width()] = 0; SkScalar partialL = bounds.fLeft + 1 - rect.fLeft; SkScalar partialR = rect.fRight - (bounds.fRight - 1); SkScalar partialT = bounds.fTop + 1 - rect.fTop; SkScalar partialB = rect.fBottom - (bounds.fBottom - 1); if (bounds.height() == 1) { partialT = rect.fBottom - rect.fTop; } alphas[0] = ScalarToAlpha(partialL * partialT); alphas[1] = ScalarToAlpha(partialT); alphas[bounds.width() - 1] = ScalarToAlpha(partialR * partialT); this->blitAntiH(bounds.fLeft, bounds.fTop, alphas, runs); if (bounds.height() > 2) { this->blitAntiRect(bounds.fLeft, bounds.fTop + 1, bounds.width() - 2, bounds.height() - 2, ScalarToAlpha(partialL), ScalarToAlpha(partialR)); } if (bounds.height() > 1) { alphas[0] = ScalarToAlpha(partialL * partialB); alphas[1] = ScalarToAlpha(partialB); alphas[bounds.width() - 1] = ScalarToAlpha(partialR * partialB); this->blitAntiH(bounds.fLeft, bounds.fBottom - 1, alphas, runs); } } void SkBlitter::blitCoverageDeltas(SkCoverageDeltaList* deltas, const SkIRect& clip, bool isEvenOdd, bool isInverse, bool isConvex) { int runSize = clip.width() + 1; // +1 so we can set runs[clip.width()] = 0 void* storage = this->allocBlitMemory(runSize * (sizeof(int16_t) + sizeof(SkAlpha))); int16_t* runs = reinterpret_cast<int16_t*>(storage); SkAlpha* alphas = reinterpret_cast<SkAlpha*>(runs + runSize); runs[clip.width()] = 0; // we must set the last run to 0 so blitAntiH can stop there bool canUseMask = !deltas->forceRLE() && SkCoverageDeltaMask::CanHandle(SkIRect::MakeLTRB(0, 0, clip.width(), 1)); const SkAntiRect& antiRect = deltas->getAntiRect(); // Only access rows within our clip. Otherwise, we'll have data race in the threaded backend. int top = SkTMax(deltas->top(), clip.fTop); int bottom = SkTMin(deltas->bottom(), clip.fBottom); for(int y = top; y < bottom; ++y) { // If antiRect is non-empty and we're in it, blit it and skip to the bottom if (y >= antiRect.fY && y < antiRect.fY + antiRect.fHeight) { // Clip the antiRect because of possible tilings (e.g., the threaded backend) int leftOverClip = clip.fLeft - antiRect.fX; int rightOverClip = antiRect.fX + antiRect.fWidth - clip.fRight; int topOverClip = clip.fTop - antiRect.fY; int botOverClip = antiRect.fY + antiRect.fHeight - clip.fBottom; int rectX = antiRect.fX; int rectY = antiRect.fY; int width = antiRect.fWidth; int height = antiRect.fHeight; SkAlpha leftAlpha = antiRect.fLeftAlpha; SkAlpha rightAlpha = antiRect.fRightAlpha; if (leftOverClip > 0) { rectX = clip.fLeft; width -= leftOverClip; leftAlpha = 0xFF; } if (rightOverClip > 0) { width -= rightOverClip; rightAlpha = 0xFF; } if (topOverClip > 0) { rectY = clip.fTop; height -= topOverClip; } if (botOverClip > 0) { height -= botOverClip; } if (width >= 0) { this->blitAntiRect(rectX, rectY, width, height, leftAlpha, rightAlpha); } y += antiRect.fHeight - 1; // -1 because ++y in the for loop continue; } // If there are too many deltas, sorting will be slow. Using a mask is much faster. // This is such an important optimization that will bring ~2x speedup for benches like // path_fill_small_long_line and path_stroke_small_sawtooth. if (canUseMask && !deltas->sorted(y) && deltas->count(y) << 3 >= clip.width()) { // Note that deltas->left()/right() may be different than clip.fLeft/fRight because in // the threaded backend, deltas are generated in the initFn with full clip, while // blitCoverageDeltas is called in drawFn with a subclip. For inverse fill, the clip // might be wider than deltas' bounds (which is clippedIR). SkIRect rowIR = SkIRect::MakeLTRB(SkTMin(clip.fLeft, deltas->left()), y, SkTMax(clip.fRight, deltas->right()), y + 1); SkSTArenaAlloc<SkCoverageDeltaMask::MAX_SIZE> alloc; SkCoverageDeltaMask mask(&alloc, rowIR); for(int i = 0; i < deltas->count(y); ++i) { const SkCoverageDelta& delta = deltas->getDelta(y, i); mask.addDelta(delta.fX, y, delta.fDelta); } mask.convertCoverageToAlpha(isEvenOdd, isInverse, isConvex); this->blitMask(mask.prepareSkMask(), rowIR); continue; } // The normal flow of blitting deltas starts from here. First sort deltas. deltas->sort(y); int i = 0; // init delta index to 0 int lastX = clip.fLeft; // init x to clip.fLeft SkFixed coverage = 0; // init coverage to 0 // skip deltas with x less than clip.fLeft; they may be: // 1. precision errors // 2. deltas generated during init-once phase (threaded backend) that has a wider // clip than the final tile clip. for(; i < deltas->count(y) && deltas->getDelta(y, i).fX < clip.fLeft; ++i) { coverage += deltas->getDelta(y, i).fDelta; } for(; i < deltas->count(y) && deltas->getDelta(y, i).fX < clip.fRight; ++i) { const SkCoverageDelta& delta = deltas->getDelta(y, i); SkASSERT(delta.fX >= lastX); // delta must be x sorted if (delta.fX > lastX) { // we have proceeded to a new x (different from lastX) SkAlpha alpha = isConvex ? ConvexCoverageToAlpha(coverage, isInverse) : CoverageToAlpha(coverage, isEvenOdd, isInverse); alphas[lastX - clip.fLeft] = alpha; // set alpha at lastX runs[lastX - clip.fLeft] = delta.fX - lastX; // set the run length lastX = delta.fX; // now set lastX to current x } coverage += delta.fDelta; // cumulate coverage with the current delta } // Set the alpha and run length from the right-most delta to the right clip boundary SkAlpha alpha = isConvex ? ConvexCoverageToAlpha(coverage, isInverse) : CoverageToAlpha(coverage, isEvenOdd, isInverse); alphas[lastX - clip.fLeft] = alpha; runs[lastX - clip.fLeft] = clip.fRight - lastX; this->blitAntiH(clip.fLeft, y, alphas, runs); // finally blit the current row } } void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) { if (alpha == 255) { this->blitRect(x, y, 1, height); } else { int16_t runs[2]; runs[0] = 1; runs[1] = 0; while (--height >= 0) { this->blitAntiH(x, y++, &alpha, runs); } } } void SkBlitter::blitRect(int x, int y, int width, int height) { SkASSERT(width > 0); while (--height >= 0) { this->blitH(x, y++, width); } } /// Default implementation doesn't check for easy optimizations /// such as alpha == 255; also uses blitV(), which some subclasses /// may not support. void SkBlitter::blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { if (leftAlpha > 0) { // we may send in x = -1 with leftAlpha = 0 this->blitV(x, y, height, leftAlpha); } x++; if (width > 0) { this->blitRect(x, y, width, height); x += width; } if (rightAlpha > 0) { this->blitV(x, y, height, rightAlpha); } } ////////////////////////////////////////////////////////////////////////////// static inline void bits_to_runs(SkBlitter* blitter, int x, int y, const uint8_t bits[], uint8_t left_mask, ptrdiff_t rowBytes, uint8_t right_mask) { int inFill = 0; int pos = 0; while (--rowBytes >= 0) { uint8_t b = *bits++ & left_mask; if (rowBytes == 0) { b &= right_mask; } for (uint8_t test = 0x80U; test != 0; test >>= 1) { if (b & test) { if (!inFill) { pos = x; inFill = true; } } else { if (inFill) { blitter->blitH(pos, y, x - pos); inFill = false; } } x += 1; } left_mask = 0xFFU; } // final cleanup if (inFill) { blitter->blitH(pos, y, x - pos); } } // maskBitCount is the number of 1's to place in the mask. It must be in the range between 1 and 8. static uint8_t generate_right_mask(int maskBitCount) { return static_cast<uint8_t>((0xFF00U >> maskBitCount) & 0xFF); } void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); if (mask.fFormat == SkMask::kLCD16_Format) { return; // needs to be handled by subclass } if (mask.fFormat == SkMask::kBW_Format) { int cx = clip.fLeft; int cy = clip.fTop; int maskLeft = mask.fBounds.fLeft; int maskRowBytes = mask.fRowBytes; int height = clip.height(); const uint8_t* bits = mask.getAddr1(cx, cy); SkDEBUGCODE(const uint8_t* endOfImage = mask.fImage + (mask.fBounds.height() - 1) * maskRowBytes + ((mask.fBounds.width() + 7) >> 3)); if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) { while (--height >= 0) { int affectedRightBit = mask.fBounds.width() - 1; ptrdiff_t rowBytes = (affectedRightBit >> 3) + 1; SkASSERT(bits + rowBytes <= endOfImage); U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1); bits_to_runs(this, cx, cy, bits, 0xFF, rowBytes, rightMask); bits += maskRowBytes; cy += 1; } } else { // Bits is calculated as the offset into the mask at the point {cx, cy} therefore, all // addressing into the bit mask is relative to that point. Since this is an address // calculated from a arbitrary bit in that byte, calculate the left most bit. int bitsLeft = cx - ((cx - maskLeft) & 7); // Everything is relative to the bitsLeft. int leftEdge = cx - bitsLeft; SkASSERT(leftEdge >= 0); int rightEdge = clip.fRight - bitsLeft; SkASSERT(rightEdge > leftEdge); // Calculate left byte and mask const uint8_t* leftByte = bits; U8CPU leftMask = 0xFFU >> (leftEdge & 7); // Calculate right byte and mask int affectedRightBit = rightEdge - 1; const uint8_t* rightByte = bits + (affectedRightBit >> 3); U8CPU rightMask = generate_right_mask((affectedRightBit & 7) + 1); // leftByte and rightByte are byte locations therefore, to get a count of bytes the // code must add one. ptrdiff_t rowBytes = rightByte - leftByte + 1; while (--height >= 0) { SkASSERT(bits + rowBytes <= endOfImage); bits_to_runs(this, bitsLeft, cy, bits, leftMask, rowBytes, rightMask); bits += maskRowBytes; cy += 1; } } } else { int width = clip.width(); SkAutoSTMalloc<64, int16_t> runStorage(width + 1); int16_t* runs = runStorage.get(); const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop); sk_memset16((uint16_t*)runs, 1, width); runs[width] = 0; int height = clip.height(); int y = clip.fTop; while (--height >= 0) { this->blitAntiH(clip.fLeft, y, aa, runs); aa += mask.fRowBytes; y += 1; } } } /////////////////////// these guys are not virtual, just a helpers void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) { if (clip.quickReject(mask.fBounds)) { return; } SkRegion::Cliperator clipper(clip, mask.fBounds); while (!clipper.done()) { const SkIRect& cr = clipper.rect(); this->blitMask(mask, cr); clipper.next(); } } void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) { SkRegion::Cliperator clipper(clip, rect); while (!clipper.done()) { const SkIRect& cr = clipper.rect(); this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height()); clipper.next(); } } void SkBlitter::blitRegion(const SkRegion& clip) { SkRegionPriv::VisitSpans(clip, [this](const SkIRect& r) { this->blitRect(r.left(), r.top(), r.width(), r.height()); }); } /////////////////////////////////////////////////////////////////////////////// void SkNullBlitter::blitH(int x, int y, int width) {} void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) {} void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {} void SkNullBlitter::blitRect(int x, int y, int width, int height) {} void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {} const SkPixmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) { return nullptr; } bool SkNullBlitter::isNullBlitter() const { return true; } /////////////////////////////////////////////////////////////////////////////// static int compute_anti_width(const int16_t runs[]) { int width = 0; for (;;) { int count = runs[0]; SkASSERT(count >= 0); if (count == 0) { break; } width += count; runs += count; } return width; } static inline bool y_in_rect(int y, const SkIRect& rect) { return (unsigned)(y - rect.fTop) < (unsigned)rect.height(); } static inline bool x_in_rect(int x, const SkIRect& rect) { return (unsigned)(x - rect.fLeft) < (unsigned)rect.width(); } void SkRectClipBlitter::blitH(int left, int y, int width) { SkASSERT(width > 0); if (!y_in_rect(y, fClipRect)) { return; } int right = left + width; if (left < fClipRect.fLeft) { left = fClipRect.fLeft; } if (right > fClipRect.fRight) { right = fClipRect.fRight; } width = right - left; if (width > 0) { fBlitter->blitH(left, y, width); } } void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[], const int16_t runs[]) { if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) { return; } int x0 = left; int x1 = left + compute_anti_width(runs); if (x1 <= fClipRect.fLeft) { return; } SkASSERT(x0 < x1); if (x0 < fClipRect.fLeft) { int dx = fClipRect.fLeft - x0; SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx); runs += dx; aa += dx; x0 = fClipRect.fLeft; } SkASSERT(x0 < x1 && runs[x1 - x0] == 0); if (x1 > fClipRect.fRight) { x1 = fClipRect.fRight; SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0); ((int16_t*)runs)[x1 - x0] = 0; } SkASSERT(x0 < x1 && runs[x1 - x0] == 0); SkASSERT(compute_anti_width(runs) == x1 - x0); fBlitter->blitAntiH(x0, y, aa, runs); } void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkASSERT(height > 0); if (!x_in_rect(x, fClipRect)) { return; } int y0 = y; int y1 = y + height; if (y0 < fClipRect.fTop) { y0 = fClipRect.fTop; } if (y1 > fClipRect.fBottom) { y1 = fClipRect.fBottom; } if (y0 < y1) { fBlitter->blitV(x, y0, y1 - y0, alpha); } } void SkRectClipBlitter::blitRect(int left, int y, int width, int height) { SkIRect r; r.set(left, y, left + width, y + height); if (r.intersect(fClipRect)) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } } void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { SkIRect r; // The *true* width of the rectangle blitted is width+2: r.set(left, y, left + width + 2, y + height); if (r.intersect(fClipRect)) { if (r.fLeft != left) { SkASSERT(r.fLeft > left); leftAlpha = 255; } if (r.fRight != left + width + 2) { SkASSERT(r.fRight < left + width + 2); rightAlpha = 255; } if (255 == leftAlpha && 255 == rightAlpha) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } else if (1 == r.width()) { if (r.fLeft == left) { fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha); } else { SkASSERT(r.fLeft == left + width + 1); fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha); } } else { fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), leftAlpha, rightAlpha); } } } void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkIRect r = clip; if (r.intersect(fClipRect)) { fBlitter->blitMask(mask, r); } } const SkPixmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } /////////////////////////////////////////////////////////////////////////////// void SkRgnClipBlitter::blitH(int x, int y, int width) { SkRegion::Spanerator span(*fRgn, y, x, x + width); int left, right; while (span.next(&left, &right)) { SkASSERT(left < right); fBlitter->blitH(left, y, right - left); } } void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { int width = compute_anti_width(runs); SkRegion::Spanerator span(*fRgn, y, x, x + width); int left, right; SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();) int prevRite = x; while (span.next(&left, &right)) { SkASSERT(x <= left); SkASSERT(left < right); SkASSERT(left >= bounds.fLeft && right <= bounds.fRight); SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left); // now zero before left if (left > prevRite) { int index = prevRite - x; ((uint8_t*)aa)[index] = 0; // skip runs after right ((int16_t*)runs)[index] = SkToS16(left - prevRite); } prevRite = right; } if (prevRite > x) { ((int16_t*)runs)[prevRite - x] = 0; if (x < 0) { int skip = runs[0]; SkASSERT(skip >= -x); aa += skip; runs += skip; x += skip; } fBlitter->blitAntiH(x, y, aa, runs); } } void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkIRect bounds; bounds.set(x, y, x + 1, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); fBlitter->blitV(x, r.fTop, r.height(), alpha); iter.next(); } } void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) { SkIRect bounds; bounds.set(x, y, x + width, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); iter.next(); } } void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { // The *true* width of the rectangle to blit is width + 2 SkIRect bounds; bounds.set(x, y, x + width + 2, y + height); SkRegion::Cliperator iter(*fRgn, bounds); while (!iter.done()) { const SkIRect& r = iter.rect(); SkASSERT(bounds.contains(r)); SkASSERT(r.fLeft >= x); SkASSERT(r.fRight <= x + width + 2); SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255; SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ? rightAlpha : 255; if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) { fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height()); } else if (1 == r.width()) { if (r.fLeft == x) { fBlitter->blitV(r.fLeft, r.fTop, r.height(), effectiveLeftAlpha); } else { SkASSERT(r.fLeft == x + width + 1); fBlitter->blitV(r.fLeft, r.fTop, r.height(), effectiveRightAlpha); } } else { fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(), effectiveLeftAlpha, effectiveRightAlpha); } iter.next(); } } void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkRegion::Cliperator iter(*fRgn, clip); const SkIRect& r = iter.rect(); SkBlitter* blitter = fBlitter; while (!iter.done()) { blitter->blitMask(mask, r); iter.next(); } } const SkPixmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } /////////////////////////////////////////////////////////////////////////////// SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip, const SkIRect* ir) { if (clip) { const SkIRect& clipR = clip->getBounds(); if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) { blitter = &fNullBlitter; } else if (clip->isRect()) { if (ir == nullptr || !clipR.contains(*ir)) { fRectBlitter.init(blitter, clipR); blitter = &fRectBlitter; } } else { fRgnBlitter.init(blitter, clip); blitter = &fRgnBlitter; } } return blitter; } /////////////////////////////////////////////////////////////////////////////// #include "SkCoreBlitters.h" // hack for testing, not to be exposed to clients bool gSkForceRasterPipelineBlitter; bool SkBlitter::UseRasterPipelineBlitter(const SkPixmap& device, const SkPaint& paint, const SkMatrix& matrix) { if (gSkForceRasterPipelineBlitter) { return true; } #if 0 || defined(SK_FORCE_RASTER_PIPELINE_BLITTER) return true; #else const SkMaskFilterBase* mf = as_MFB(paint.getMaskFilter()); // The legacy blitters cannot handle any of these complex features (anymore). if (device.alphaType() == kUnpremul_SkAlphaType || matrix.hasPerspective() || paint.getColorFilter() || paint.getBlendMode() > SkBlendMode::kLastCoeffMode || paint.getFilterQuality() == kHigh_SkFilterQuality || (mf && mf->getFormat() == SkMask::k3D_Format)) { return true; } // All the real legacy fast paths are for shaders and SrcOver. // Choosing SkRasterPipelineBlitter will also let us to hit its single-color memset path. if (!paint.getShader() && paint.getBlendMode() != SkBlendMode::kSrcOver) { return true; } auto cs = device.colorSpace(); // We check (indirectly via makeContext()) later on if the shader can handle the colorspace // in legacy mode, so here we just focus on if a single color needs raster-pipeline. if (cs && !paint.getShader()) { if (!paint.getColor4f().fitsInBytes() || !cs->isSRGB()) { return true; } } // Only kN32 and 565 are handled by legacy blitters now, 565 mostly just for Android. return device.colorType() != kN32_SkColorType && device.colorType() != kRGB_565_SkColorType; #endif } SkBlitter* SkBlitter::Choose(const SkPixmap& device, const SkMatrix& matrix, const SkPaint& origPaint, SkArenaAlloc* alloc, bool drawCoverage) { SkASSERT(alloc); if (kUnknown_SkColorType == device.colorType()) { return alloc->make<SkNullBlitter>(); } // We may tweak the original paint as we go. SkTCopyOnFirstWrite<SkPaint> paint(origPaint); // We have the most fast-paths for SrcOver, so see if we can act like SrcOver. if (paint->getBlendMode() != SkBlendMode::kSrcOver) { switch (SkInterpretXfermode(*paint, SkColorTypeIsAlwaysOpaque(device.colorType()))) { case kSrcOver_SkXfermodeInterpretation: paint.writable()->setBlendMode(SkBlendMode::kSrcOver); break; case kSkipDrawing_SkXfermodeInterpretation: return alloc->make<SkNullBlitter>(); default: break; } } // A Clear blend mode will ignore the entire color pipeline, as if Src mode with 0x00000000. if (paint->getBlendMode() == SkBlendMode::kClear) { SkPaint* p = paint.writable(); p->setShader(nullptr); p->setColorFilter(nullptr); p->setBlendMode(SkBlendMode::kSrc); p->setColor(0x00000000); } if (drawCoverage) { if (device.colorType() == kAlpha_8_SkColorType) { SkASSERT(!paint->getShader()); SkASSERT(paint->isSrcOver()); return alloc->make<SkA8_Coverage_Blitter>(device, *paint); } return alloc->make<SkNullBlitter>(); } if (paint->isDither() && !SkPaintPriv::ShouldDither(*paint, device.colorType())) { paint.writable()->setDither(false); } // We'll end here for many interesting cases: color spaces, color filters, most color types. if (UseRasterPipelineBlitter(device, *paint, matrix)) { auto blitter = SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc); SkASSERT(blitter); return blitter; } // Everything but legacy kN32_SkColorType and kRGB_565_SkColorType should already be handled. SkASSERT(device.colorType() == kN32_SkColorType || device.colorType() == kRGB_565_SkColorType); // And we should either have a shader, be blending with SrcOver, or both. SkASSERT(paint->getShader() || paint->getBlendMode() == SkBlendMode::kSrcOver); // Legacy blitters keep their shader state on a shader context. SkShaderBase::Context* shaderContext = nullptr; if (paint->getShader()) { shaderContext = as_SB(paint->getShader())->makeContext( {*paint, matrix, nullptr, device.colorType(), device.colorSpace()}, alloc); // Creating the context isn't always possible... we'll just fall back to raster pipeline. if (!shaderContext) { auto blitter = SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc); SkASSERT(blitter); return blitter; } } switch (device.colorType()) { case kN32_SkColorType: if (shaderContext) { return alloc->make<SkARGB32_Shader_Blitter>(device, *paint, shaderContext); } else if (paint->getColor() == SK_ColorBLACK) { return alloc->make<SkARGB32_Black_Blitter>(device, *paint); } else if (paint->getAlpha() == 0xFF) { return alloc->make<SkARGB32_Opaque_Blitter>(device, *paint); } else { return alloc->make<SkARGB32_Blitter>(device, *paint); } case kRGB_565_SkColorType: if (shaderContext && SkRGB565_Shader_Blitter::Supports(device, *paint)) { return alloc->make<SkRGB565_Shader_Blitter>(device, *paint, shaderContext); } else { return SkCreateRasterPipelineBlitter(device, *paint, matrix, alloc); } default: SkASSERT(false); return alloc->make<SkNullBlitter>(); } } /////////////////////////////////////////////////////////////////////////////// SkShaderBlitter::SkShaderBlitter(const SkPixmap& device, const SkPaint& paint, SkShaderBase::Context* shaderContext) : INHERITED(device) , fShader(paint.getShader()) , fShaderContext(shaderContext) { SkASSERT(fShader); SkASSERT(fShaderContext); fShader->ref(); fShaderFlags = fShaderContext->getFlags(); fConstInY = SkToBool(fShaderFlags & SkShaderBase::kConstInY32_Flag); } SkShaderBlitter::~SkShaderBlitter() { fShader->unref(); } /////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void SkRectClipCheckBlitter::blitH(int x, int y, int width) { SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, 1))); fBlitter->blitH(x, y, width); } void SkRectClipCheckBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { const int16_t* iter = runs; for (; *iter; iter += *iter) ; int width = iter - runs; SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, 1))); fBlitter->blitAntiH(x, y, aa, runs); } void SkRectClipCheckBlitter::blitV(int x, int y, int height, SkAlpha alpha) { SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 1, height))); fBlitter->blitV(x, y, height, alpha); } void SkRectClipCheckBlitter::blitRect(int x, int y, int width, int height) { SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, width, height))); fBlitter->blitRect(x, y, width, height); } void SkRectClipCheckBlitter::blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) { bool skipLeft = !leftAlpha; bool skipRight = !rightAlpha; #ifdef SK_DEBUG SkIRect r = SkIRect::MakeXYWH(x + skipLeft, y, width + 2 - skipRight - skipLeft, height); SkASSERT(r.isEmpty() || fClipRect.contains(r)); #endif fBlitter->blitAntiRect(x, y, width, height, leftAlpha, rightAlpha); } void SkRectClipCheckBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { SkASSERT(mask.fBounds.contains(clip)); SkASSERT(fClipRect.contains(clip)); fBlitter->blitMask(mask, clip); } const SkPixmap* SkRectClipCheckBlitter::justAnOpaqueColor(uint32_t* value) { return fBlitter->justAnOpaqueColor(value); } void SkRectClipCheckBlitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) { SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 2, 1))); fBlitter->blitAntiH2(x, y, a0, a1); } void SkRectClipCheckBlitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) { SkASSERT(fClipRect.contains(SkIRect::MakeXYWH(x, y, 1, 2))); fBlitter->blitAntiV2(x, y, a0, a1); } #endif