/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm.h" #include "SkPath.h" #include "SkRandom.h" #include "SkTArray.h" class SkDoOnce : SkNoncopyable { public: SkDoOnce() { fDidOnce = false; } bool needToDo() const { return !fDidOnce; } bool alreadyDone() const { return fDidOnce; } void accomplished() { SkASSERT(!fDidOnce); fDidOnce = true; } private: bool fDidOnce; }; namespace skiagm { class ConvexPathsGM : public GM { SkDoOnce fOnce; public: ConvexPathsGM() { this->setBGColor(0xFF000000); } protected: virtual SkString onShortName() { return SkString("convexpaths"); } virtual SkISize onISize() { return SkISize::Make(1200, 1100); } void makePaths() { if (fOnce.alreadyDone()) { return; } fOnce.accomplished(); fPaths.push_back().moveTo(0, 0); fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1, 0, 100 * SK_Scalar1); fPaths.back().lineTo(0, 0); fPaths.push_back().moveTo(0, 50 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 0, 100 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1, 0, 50 * SK_Scalar1); fPaths.push_back().addRect(0, 0, 100 * SK_Scalar1, 100 * SK_Scalar1, SkPath::kCW_Direction); fPaths.push_back().addRect(0, 0, 100 * SK_Scalar1, 100 * SK_Scalar1, SkPath::kCCW_Direction); fPaths.push_back().addCircle(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, SkPath::kCW_Direction); fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, 50 * SK_Scalar1, 100 * SK_Scalar1), SkPath::kCW_Direction); fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, 100 * SK_Scalar1, 5 * SK_Scalar1), SkPath::kCCW_Direction); fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, SK_Scalar1, 100 * SK_Scalar1), SkPath::kCCW_Direction); fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0, SK_Scalar1 * 100, SK_Scalar1 * 100), 40 * SK_Scalar1, 20 * SK_Scalar1, SkPath::kCW_Direction); // large number of points enum { kLength = 100, kPtsPerSide = (1 << 12), }; fPaths.push_back().moveTo(0, 0); for (int i = 1; i < kPtsPerSide; ++i) { // skip the first point due to moveTo. fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, 0); } for (int i = 0; i < kPtsPerSide; ++i) { fPaths.back().lineTo(kLength, kLength * SkIntToScalar(i) / kPtsPerSide); } for (int i = kPtsPerSide; i > 0; --i) { fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, kLength); } for (int i = kPtsPerSide; i > 0; --i) { fPaths.back().lineTo(0, kLength * SkIntToScalar(i) / kPtsPerSide); } // shallow diagonals fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1); fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1); fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1); fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0, 50 * SK_Scalar1, 100 * SK_Scalar1), 25 * SK_Scalar1, 130 * SK_Scalar1, false); // cubics fPaths.push_back().cubicTo( 1 * SK_Scalar1, 1 * SK_Scalar1, 10 * SK_Scalar1, 90 * SK_Scalar1, 0 * SK_Scalar1, 100 * SK_Scalar1); fPaths.push_back().cubicTo(100 * SK_Scalar1, 50 * SK_Scalar1, 20 * SK_Scalar1, 100 * SK_Scalar1, 0 * SK_Scalar1, 0 * SK_Scalar1); // path that has a cubic with a repeated first control point and // a repeated last control point. fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10); fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1, 10 * SK_Scalar1, 0, 20 * SK_Scalar1, 0); fPaths.back().lineTo(40 * SK_Scalar1, 0); fPaths.back().cubicTo(40 * SK_Scalar1, 0, 50 * SK_Scalar1, 0, 50 * SK_Scalar1, 10 * SK_Scalar1); // path that has two cubics with repeated middle control points. fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10); fPaths.back().cubicTo(10 * SK_Scalar1, 0, 10 * SK_Scalar1, 0, 20 * SK_Scalar1, 0); fPaths.back().lineTo(40 * SK_Scalar1, 0); fPaths.back().cubicTo(50 * SK_Scalar1, 0, 50 * SK_Scalar1, 0, 50 * SK_Scalar1, 10 * SK_Scalar1); // cubic where last three points are almost a line fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8); fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8, 1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8, 1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8); // flat cubic where the at end point tangents both point outward. fPaths.push_back().moveTo(10 * SK_Scalar1, 0); fPaths.back().cubicTo(0, SK_Scalar1, 30 * SK_Scalar1, SK_Scalar1, 20 * SK_Scalar1, 0); // flat cubic where initial tangent is in, end tangent out fPaths.push_back().moveTo(0, 0 * SK_Scalar1); fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1, 30 * SK_Scalar1, SK_Scalar1, 20 * SK_Scalar1, 0); // flat cubic where initial tangent is out, end tangent in fPaths.push_back().moveTo(10 * SK_Scalar1, 0); fPaths.back().cubicTo(0, SK_Scalar1, 20 * SK_Scalar1, SK_Scalar1, 30 * SK_Scalar1, 0); // triangle where one edge is a degenerate quad fPaths.push_back().moveTo(8.59375f, 45 * SK_Scalar1); fPaths.back().quadTo(16.9921875f, 45 * SK_Scalar1, 31.25f, 45 * SK_Scalar1); fPaths.back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1); fPaths.back().lineTo(8.59375f, 45 * SK_Scalar1); // triangle where one edge is a quad with a repeated point fPaths.push_back().moveTo(0, 25 * SK_Scalar1); fPaths.back().lineTo(50 * SK_Scalar1, 0); fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); // triangle where one edge is a cubic with a 2x repeated point fPaths.push_back().moveTo(0, 25 * SK_Scalar1); fPaths.back().lineTo(50 * SK_Scalar1, 0); fPaths.back().cubicTo(50 * SK_Scalar1, 0, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); // triangle where one edge is a quad with a nearly repeated point fPaths.push_back().moveTo(0, 25 * SK_Scalar1); fPaths.back().lineTo(50 * SK_Scalar1, 0); fPaths.back().quadTo(50 * SK_Scalar1, 49.95f, 50 * SK_Scalar1, 50 * SK_Scalar1); // triangle where one edge is a cubic with a 3x nearly repeated point fPaths.push_back().moveTo(0, 25 * SK_Scalar1); fPaths.back().lineTo(50 * SK_Scalar1, 0); fPaths.back().cubicTo(50 * SK_Scalar1, 49.95f, 50 * SK_Scalar1, 49.97f, 50 * SK_Scalar1, 50 * SK_Scalar1); // triangle where there is a point degenerate cubic at one corner fPaths.push_back().moveTo(0, 25 * SK_Scalar1); fPaths.back().lineTo(50 * SK_Scalar1, 0); fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); // point line fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1); // point quad fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); // point cubic fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); // moveTo only paths fPaths.push_back().moveTo(0, 0); fPaths.back().moveTo(0, 0); fPaths.back().moveTo(SK_Scalar1, SK_Scalar1); fPaths.back().moveTo(SK_Scalar1, SK_Scalar1); fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1); fPaths.push_back().moveTo(0, 0); fPaths.back().moveTo(0, 0); // line degenerate fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1); fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0); fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 100 * SK_Scalar1, 100 * SK_Scalar1); fPaths.push_back().cubicTo(0, 0, 0, 0, 100 * SK_Scalar1, 100 * SK_Scalar1); // small circle. This is listed last so that it has device coords far // from the origin (small area relative to x,y values). fPaths.push_back().addCircle(0, 0, 1.2f); } virtual void onDraw(SkCanvas* canvas) { this->makePaths(); SkPaint paint; paint.setAntiAlias(true); SkRandom rand; canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1); // As we've added more paths this has gotten pretty big. Scale the whole thing down. canvas->scale(2 * SK_Scalar1 / 3, 2 * SK_Scalar1 / 3); for (int i = 0; i < fPaths.count(); ++i) { canvas->save(); // position the path, and make it at off-integer coords. canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 10, SK_Scalar1 * 200 * (i / 5) + 9 * SK_Scalar1 / 10); SkColor color = rand.nextU(); color |= 0xff000000; paint.setColor(color); #if 0 // This hitting on 32bit Linux builds for some paths. Temporarily disabling while it is // debugged. SkASSERT(fPaths[i].isConvex()); #endif canvas->drawPath(fPaths[i], paint); canvas->restore(); } } private: typedef GM INHERITED; SkTArray<SkPath> fPaths; }; ////////////////////////////////////////////////////////////////////////////// DEF_GM( return new ConvexPathsGM; ) }