/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SKPBench.h" #include "SkCommandLineFlags.h" #include "SkMultiPictureDraw.h" #include "SkSurface.h" #include "GrContext.h" #include "GrContextPriv.h" // These CPU tile sizes are not good per se, but they are similar to what Chrome uses. DEFINE_int32(CPUbenchTileW, 256, "Tile width used for CPU SKP playback."); DEFINE_int32(CPUbenchTileH, 256, "Tile height used for CPU SKP playback."); DEFINE_int32(GPUbenchTileW, 1600, "Tile width used for GPU SKP playback."); DEFINE_int32(GPUbenchTileH, 512, "Tile height used for GPU SKP playback."); SKPBench::SKPBench(const char* name, const SkPicture* pic, const SkIRect& clip, SkScalar scale, bool useMultiPictureDraw, bool doLooping) : fPic(SkRef(pic)) , fClip(clip) , fScale(scale) , fName(name) , fUseMultiPictureDraw(useMultiPictureDraw) , fDoLooping(doLooping) { fUniqueName.printf("%s_%.2g", name, scale); // Scale makes this unqiue for perf.skia.org traces. if (useMultiPictureDraw) { fUniqueName.append("_mpd"); } } SKPBench::~SKPBench() { for (int i = 0; i < fSurfaces.count(); ++i) { fSurfaces[i]->unref(); } } const char* SKPBench::onGetName() { return fName.c_str(); } const char* SKPBench::onGetUniqueName() { return fUniqueName.c_str(); } void SKPBench::onPerCanvasPreDraw(SkCanvas* canvas) { SkIRect bounds = canvas->getDeviceClipBounds(); SkAssertResult(!bounds.isEmpty()); const bool gpu = canvas->getGrContext() != nullptr; int tileW = gpu ? FLAGS_GPUbenchTileW : FLAGS_CPUbenchTileW, tileH = gpu ? FLAGS_GPUbenchTileH : FLAGS_CPUbenchTileH; tileW = SkTMin(tileW, bounds.width()); tileH = SkTMin(tileH, bounds.height()); int xTiles = SkScalarCeilToInt(bounds.width() / SkIntToScalar(tileW)); int yTiles = SkScalarCeilToInt(bounds.height() / SkIntToScalar(tileH)); fSurfaces.reserve(xTiles * yTiles); fTileRects.setReserve(xTiles * yTiles); SkImageInfo ii = canvas->imageInfo().makeWH(tileW, tileH); for (int y = bounds.fTop; y < bounds.fBottom; y += tileH) { for (int x = bounds.fLeft; x < bounds.fRight; x += tileW) { const SkIRect tileRect = SkIRect::MakeXYWH(x, y, tileW, tileH); *fTileRects.append() = tileRect; fSurfaces.emplace_back(canvas->makeSurface(ii)); // Never want the contents of a tile to include stuff the parent // canvas clips out SkRect clip = SkRect::Make(bounds); clip.offset(-SkIntToScalar(tileRect.fLeft), -SkIntToScalar(tileRect.fTop)); fSurfaces.back()->getCanvas()->clipRect(clip); fSurfaces.back()->getCanvas()->setMatrix(canvas->getTotalMatrix()); fSurfaces.back()->getCanvas()->scale(fScale, fScale); } } } void SKPBench::onPerCanvasPostDraw(SkCanvas* canvas) { // Draw the last set of tiles into the master canvas in case we're // saving the images for (int i = 0; i < fTileRects.count(); ++i) { sk_sp<SkImage> image(fSurfaces[i]->makeImageSnapshot()); canvas->drawImage(image, SkIntToScalar(fTileRects[i].fLeft), SkIntToScalar(fTileRects[i].fTop)); } fSurfaces.reset(); fTileRects.rewind(); } bool SKPBench::isSuitableFor(Backend backend) { return backend != kNonRendering_Backend; } SkIPoint SKPBench::onGetSize() { return SkIPoint::Make(fClip.width(), fClip.height()); } void SKPBench::onDraw(int loops, SkCanvas* canvas) { SkASSERT(fDoLooping || 1 == loops); while (1) { if (fUseMultiPictureDraw) { this->drawMPDPicture(); } else { this->drawPicture(); } if (0 == --loops) { break; } // Ensure the GrContext doesn't combine ops across draw loops. if (GrContext* context = canvas->getGrContext()) { context->flush(); } } } void SKPBench::drawMPDPicture() { SkMultiPictureDraw mpd; for (int j = 0; j < fTileRects.count(); ++j) { SkMatrix trans; trans.setTranslate(-fTileRects[j].fLeft/fScale, -fTileRects[j].fTop/fScale); mpd.add(fSurfaces[j]->getCanvas(), fPic.get(), &trans); } // We flush after each picture to more closely model how Chrome rasterizes tiles. mpd.draw(/*flush = */ true); } void SKPBench::drawPicture() { for (int j = 0; j < fTileRects.count(); ++j) { const SkMatrix trans = SkMatrix::MakeTrans(-fTileRects[j].fLeft / fScale, -fTileRects[j].fTop / fScale); fSurfaces[j]->getCanvas()->drawPicture(fPic.get(), &trans, nullptr); } for (int j = 0; j < fTileRects.count(); ++j) { fSurfaces[j]->getCanvas()->flush(); } } #include "GrGpu.h" static void draw_pic_for_stats(SkCanvas* canvas, GrContext* context, const SkPicture* picture, SkTArray<SkString>* keys, SkTArray<double>* values, const char* tag) { context->priv().resetGpuStats(); canvas->drawPicture(picture); canvas->flush(); int offset = keys->count(); context->priv().dumpGpuStatsKeyValuePairs(keys, values); context->priv().dumpCacheStatsKeyValuePairs(keys, values); // append tag, but only to new tags for (int i = offset; i < keys->count(); i++, offset++) { (*keys)[i].appendf("_%s", tag); } } void SKPBench::getGpuStats(SkCanvas* canvas, SkTArray<SkString>* keys, SkTArray<double>* values) { // we do a special single draw and then dump the key / value pairs GrContext* context = canvas->getGrContext(); if (!context) { return; } // TODO refactor this out if we want to test other subclasses of skpbench context->flush(); context->freeGpuResources(); context->resetContext(); context->priv().getGpu()->resetShaderCacheForTesting(); draw_pic_for_stats(canvas, context, fPic.get(), keys, values, "first_frame"); // draw second frame draw_pic_for_stats(canvas, context, fPic.get(), keys, values, "second_frame"); }