/*- * Copyright 2009 Colin Percival * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include "scrypt_platform.h" #include <sys/types.h> #include <sys/mman.h> #include <emmintrin.h> #include <errno.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #ifdef USE_OPENSSL_PBKDF2 #include <openssl/evp.h> #else #include "sha256.h" #endif #include "sysendian.h" #include "crypto_scrypt.h" static void blkcpy(void *, void *, size_t); static void blkxor(void *, void *, size_t); static void salsa20_8(__m128i *); static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t); static uint64_t integerify(void *, size_t); static void smix(uint8_t *, size_t, uint64_t, void *, void *); static void blkcpy(void * dest, void * src, size_t len) { __m128i * D = dest; __m128i * S = src; size_t L = len / 16; size_t i; for (i = 0; i < L; i++) D[i] = S[i]; } static void blkxor(void * dest, void * src, size_t len) { __m128i * D = dest; __m128i * S = src; size_t L = len / 16; size_t i; for (i = 0; i < L; i++) D[i] = _mm_xor_si128(D[i], S[i]); } /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ static void salsa20_8(__m128i B[4]) { __m128i X0, X1, X2, X3; __m128i T; size_t i; X0 = B[0]; X1 = B[1]; X2 = B[2]; X3 = B[3]; for (i = 0; i < 8; i += 2) { /* Operate on "columns". */ T = _mm_add_epi32(X0, X3); X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7)); X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25)); T = _mm_add_epi32(X1, X0); X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); T = _mm_add_epi32(X2, X1); X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13)); X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19)); T = _mm_add_epi32(X3, X2); X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); /* Rearrange data. */ X1 = _mm_shuffle_epi32(X1, 0x93); X2 = _mm_shuffle_epi32(X2, 0x4E); X3 = _mm_shuffle_epi32(X3, 0x39); /* Operate on "rows". */ T = _mm_add_epi32(X0, X1); X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7)); X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25)); T = _mm_add_epi32(X3, X0); X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); T = _mm_add_epi32(X2, X3); X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13)); X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19)); T = _mm_add_epi32(X1, X2); X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); /* Rearrange data. */ X1 = _mm_shuffle_epi32(X1, 0x39); X2 = _mm_shuffle_epi32(X2, 0x4E); X3 = _mm_shuffle_epi32(X3, 0x93); } B[0] = _mm_add_epi32(B[0], X0); B[1] = _mm_add_epi32(B[1], X1); B[2] = _mm_add_epi32(B[2], X2); B[3] = _mm_add_epi32(B[3], X3); } /** * blockmix_salsa8(Bin, Bout, X, r): * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r * bytes in length; the output Bout must also be the same size. The * temporary space X must be 64 bytes. */ static void blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r) { size_t i; /* 1: X <-- B_{2r - 1} */ blkcpy(X, &Bin[8 * r - 4], 64); /* 2: for i = 0 to 2r - 1 do */ for (i = 0; i < r; i++) { /* 3: X <-- H(X \xor B_i) */ blkxor(X, &Bin[i * 8], 64); salsa20_8(X); /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ blkcpy(&Bout[i * 4], X, 64); /* 3: X <-- H(X \xor B_i) */ blkxor(X, &Bin[i * 8 + 4], 64); salsa20_8(X); /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ blkcpy(&Bout[(r + i) * 4], X, 64); } } /** * integerify(B, r): * Return the result of parsing B_{2r-1} as a little-endian integer. */ static uint64_t integerify(void * B, size_t r) { uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); return (((uint64_t)(X[13]) << 32) + X[0]); } /** * smix(B, r, N, V, XY): * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; * the temporary storage V must be 128rN bytes in length; the temporary * storage XY must be 256r + 64 bytes in length. The value N must be a * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a * multiple of 64 bytes. */ static void smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY) { __m128i * X = XY; __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r); __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r); uint32_t * X32 = (void *)X; uint64_t i, j; size_t k; /* 1: X <-- B */ for (k = 0; k < 2 * r; k++) { for (i = 0; i < 16; i++) { X32[k * 16 + i] = le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]); } } /* 2: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { /* 3: V_i <-- X */ blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(X, Y, Z, r); /* 3: V_i <-- X */ blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r), Y, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(Y, X, Z, r); } /* 6: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { /* 7: j <-- Integerify(X) mod N */ j = integerify(X, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); blockmix_salsa8(X, Y, Z, r); /* 7: j <-- Integerify(X) mod N */ j = integerify(Y, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); blockmix_salsa8(Y, X, Z, r); } /* 10: B' <-- X */ for (k = 0; k < 2 * r; k++) { for (i = 0; i < 16; i++) { le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], X32[k * 16 + i]); } } } /** * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, * p, buflen) and write the result into buf. The parameters r, p, and buflen * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N * must be a power of 2 greater than 1. * * Return 0 on success; or -1 on error. */ int crypto_scrypt(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, uint8_t * buf, size_t buflen) { void * B0, * V0, * XY0; uint8_t * B; uint32_t * V; uint32_t * XY; uint32_t i; /* Sanity-check parameters. */ #if SIZE_MAX > UINT32_MAX if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { errno = EFBIG; goto err0; } #endif if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { errno = EFBIG; goto err0; } if (((N & (N - 1)) != 0) || (N == 0)) { errno = EINVAL; goto err0; } if ((r > SIZE_MAX / 128 / p) || #if SIZE_MAX / 256 <= UINT32_MAX (r > (SIZE_MAX - 64) / 256) || #endif (N > SIZE_MAX / 128 / r)) { errno = ENOMEM; goto err0; } /* Allocate memory. */ #ifdef HAVE_POSIX_MEMALIGN if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) goto err0; B = (uint8_t *)(B0); if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) goto err1; XY = (uint32_t *)(XY0); #ifndef MAP_ANON if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) goto err2; V = (uint32_t *)(V0); #endif #else if ((B0 = malloc(128 * r * p + 63)) == NULL) goto err0; B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) goto err1; XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); #ifndef MAP_ANON if ((V0 = malloc(128 * r * N + 63)) == NULL) goto err2; V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); #endif #endif #ifdef MAP_ANON if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, #ifdef MAP_NOCORE MAP_ANON | MAP_PRIVATE | MAP_NOCORE, #else MAP_ANON | MAP_PRIVATE, #endif -1, 0)) == MAP_FAILED) goto err2; V = (uint32_t *)(V0); #endif /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ #ifdef USE_OPENSSL_PBKDF2 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B); #else PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); #endif /* 2: for i = 0 to p - 1 do */ for (i = 0; i < p; i++) { /* 3: B_i <-- MF(B_i, N) */ smix(&B[i * 128 * r], r, N, V, XY); } /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ #ifdef USE_OPENSSL_PBKDF2 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf); #else PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); #endif /* Free memory. */ #ifdef MAP_ANON if (munmap(V0, 128 * r * N)) goto err2; #else free(V0); #endif free(XY0); free(B0); /* Success! */ return (0); err2: free(XY0); err1: free(B0); err0: /* Failure! */ return (-1); }