/*- * Copyright 2009 Colin Percival * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include "scrypt_platform.h" #include <errno.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #ifdef USE_OPENSSL_PBKDF2 #include <openssl/evp.h> #else #include "sha256.h" #endif #include "sysendian.h" #include "crypto_scrypt.h" static void blkcpy(uint8_t *, uint8_t *, size_t); static void blkxor(uint8_t *, uint8_t *, size_t); static void salsa20_8(uint8_t[64]); static void blockmix_salsa8(uint8_t *, uint8_t *, size_t); static uint64_t integerify(uint8_t *, size_t); static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *); static void blkcpy(uint8_t * dest, uint8_t * src, size_t len) { size_t i; for (i = 0; i < len; i++) dest[i] = src[i]; } static void blkxor(uint8_t * dest, uint8_t * src, size_t len) { size_t i; for (i = 0; i < len; i++) dest[i] ^= src[i]; } /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ static void salsa20_8(uint8_t B[64]) { uint32_t B32[16]; uint32_t x[16]; size_t i; /* Convert little-endian values in. */ for (i = 0; i < 16; i++) B32[i] = le32dec(&B[i * 4]); /* Compute x = doubleround^4(B32). */ for (i = 0; i < 16; i++) x[i] = B32[i]; for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); /* Operate on rows. */ x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); #undef R } /* Compute B32 = B32 + x. */ for (i = 0; i < 16; i++) B32[i] += x[i]; /* Convert little-endian values out. */ for (i = 0; i < 16; i++) le32enc(&B[4 * i], B32[i]); } /** * blockmix_salsa8(B, Y, r): * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in * length; the temporary space Y must also be the same size. */ static void blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r) { uint8_t X[64]; size_t i; /* 1: X <-- B_{2r - 1} */ blkcpy(X, &B[(2 * r - 1) * 64], 64); /* 2: for i = 0 to 2r - 1 do */ for (i = 0; i < 2 * r; i++) { /* 3: X <-- H(X \xor B_i) */ blkxor(X, &B[i * 64], 64); salsa20_8(X); /* 4: Y_i <-- X */ blkcpy(&Y[i * 64], X, 64); } /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ for (i = 0; i < r; i++) blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64); for (i = 0; i < r; i++) blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64); } /** * integerify(B, r): * Return the result of parsing B_{2r-1} as a little-endian integer. */ static uint64_t integerify(uint8_t * B, size_t r) { uint8_t * X = &B[(2 * r - 1) * 64]; return (le64dec(X)); } /** * smix(B, r, N, V, XY): * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the * temporary storage V must be 128rN bytes in length; the temporary storage * XY must be 256r bytes in length. The value N must be a power of 2. */ static void smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY) { uint8_t * X = XY; uint8_t * Y = &XY[128 * r]; uint64_t i; uint64_t j; /* 1: X <-- B */ blkcpy(X, B, 128 * r); /* 2: for i = 0 to N - 1 do */ for (i = 0; i < N; i++) { /* 3: V_i <-- X */ blkcpy(&V[i * (128 * r)], X, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(X, Y, r); } /* 6: for i = 0 to N - 1 do */ for (i = 0; i < N; i++) { /* 7: j <-- Integerify(X) mod N */ j = integerify(X, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor(X, &V[j * (128 * r)], 128 * r); blockmix_salsa8(X, Y, r); } /* 10: B' <-- X */ blkcpy(B, X, 128 * r); } /** * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, * p, buflen) and write the result into buf. The parameters r, p, and buflen * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N * must be a power of 2. * * Return 0 on success; or -1 on error. */ int crypto_scrypt(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, uint8_t * buf, size_t buflen) { uint8_t * B; uint8_t * V; uint8_t * XY; uint32_t i; /* Sanity-check parameters. */ #if SIZE_MAX > UINT32_MAX if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { errno = EFBIG; goto err0; } #endif if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { errno = EFBIG; goto err0; } if (((N & (N - 1)) != 0) || (N == 0)) { errno = EINVAL; goto err0; } if ((r > SIZE_MAX / 128 / p) || #if SIZE_MAX / 256 <= UINT32_MAX (r > SIZE_MAX / 256) || #endif (N > SIZE_MAX / 128 / r)) { errno = ENOMEM; goto err0; } /* Allocate memory. */ if ((B = malloc(128 * r * p)) == NULL) goto err0; if ((XY = malloc(256 * r)) == NULL) goto err1; if ((V = malloc(128 * r * N)) == NULL) goto err2; /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ #ifdef USE_OPENSSL_PBKDF2 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B); #else PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); #endif /* 2: for i = 0 to p - 1 do */ for (i = 0; i < p; i++) { /* 3: B_i <-- MF(B_i, N) */ smix(&B[i * 128 * r], r, N, V, XY); } /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ #ifdef USE_OPENSSL_PBKDF2 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf); #else PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); #endif /* Free memory. */ free(V); free(XY); free(B); /* Success! */ return (0); err2: free(XY); err1: free(B); err0: /* Failure! */ return (-1); }