/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */ /* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */ /* Eliminated some memory leaks, gsw@agere.com */ #include <windows.h> #include <limits.h> #ifdef HAVE_PROCESS_H #include <process.h> #endif /* options */ #ifndef _PY_USE_CV_LOCKS #define _PY_USE_CV_LOCKS 1 /* use locks based on cond vars */ #endif /* Now, define a non-recursive mutex using either condition variables * and critical sections (fast) or using operating system mutexes * (slow) */ #if _PY_USE_CV_LOCKS #include "condvar.h" typedef struct _NRMUTEX { PyMUTEX_T cs; PyCOND_T cv; int locked; } NRMUTEX; typedef NRMUTEX *PNRMUTEX; PNRMUTEX AllocNonRecursiveMutex() { PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX)); if (!m) return NULL; if (PyCOND_INIT(&m->cv)) goto fail; if (PyMUTEX_INIT(&m->cs)) { PyCOND_FINI(&m->cv); goto fail; } m->locked = 0; return m; fail: PyMem_RawFree(m); return NULL; } VOID FreeNonRecursiveMutex(PNRMUTEX mutex) { if (mutex) { PyCOND_FINI(&mutex->cv); PyMUTEX_FINI(&mutex->cs); PyMem_RawFree(mutex); } } DWORD EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds) { DWORD result = WAIT_OBJECT_0; if (PyMUTEX_LOCK(&mutex->cs)) return WAIT_FAILED; if (milliseconds == INFINITE) { while (mutex->locked) { if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) { result = WAIT_FAILED; break; } } } else if (milliseconds != 0) { /* wait at least until the target */ DWORD now, target = GetTickCount() + milliseconds; while (mutex->locked) { if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, (long long)milliseconds*1000) < 0) { result = WAIT_FAILED; break; } now = GetTickCount(); if (target <= now) break; milliseconds = target-now; } } if (!mutex->locked) { mutex->locked = 1; result = WAIT_OBJECT_0; } else if (result == WAIT_OBJECT_0) result = WAIT_TIMEOUT; /* else, it is WAIT_FAILED */ PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */ return result; } BOOL LeaveNonRecursiveMutex(PNRMUTEX mutex) { BOOL result; if (PyMUTEX_LOCK(&mutex->cs)) return FALSE; mutex->locked = 0; /* condvar APIs return 0 on success. We need to return TRUE on success. */ result = !PyCOND_SIGNAL(&mutex->cv); PyMUTEX_UNLOCK(&mutex->cs); return result; } #else /* if ! _PY_USE_CV_LOCKS */ /* NR-locks based on a kernel mutex */ #define PNRMUTEX HANDLE PNRMUTEX AllocNonRecursiveMutex() { return CreateSemaphore(NULL, 1, 1, NULL); } VOID FreeNonRecursiveMutex(PNRMUTEX mutex) { /* No in-use check */ CloseHandle(mutex); } DWORD EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds) { return WaitForSingleObjectEx(mutex, milliseconds, FALSE); } BOOL LeaveNonRecursiveMutex(PNRMUTEX mutex) { return ReleaseSemaphore(mutex, 1, NULL); } #endif /* _PY_USE_CV_LOCKS */ unsigned long PyThread_get_thread_ident(void); /* * Initialization of the C package, should not be needed. */ static void PyThread__init_thread(void) { } /* * Thread support. */ typedef struct { void (*func)(void*); void *arg; } callobj; /* thunker to call adapt between the function type used by the system's thread start function and the internally used one. */ static unsigned __stdcall bootstrap(void *call) { callobj *obj = (callobj*)call; void (*func)(void*) = obj->func; void *arg = obj->arg; HeapFree(GetProcessHeap(), 0, obj); func(arg); return 0; } unsigned long PyThread_start_new_thread(void (*func)(void *), void *arg) { HANDLE hThread; unsigned threadID; callobj *obj; dprintf(("%lu: PyThread_start_new_thread called\n", PyThread_get_thread_ident())); if (!initialized) PyThread_init_thread(); obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj)); if (!obj) return PYTHREAD_INVALID_THREAD_ID; obj->func = func; obj->arg = arg; PyThreadState *tstate = PyThreadState_GET(); size_t stacksize = tstate ? tstate->interp->pythread_stacksize : 0; hThread = (HANDLE)_beginthreadex(0, Py_SAFE_DOWNCAST(stacksize, Py_ssize_t, unsigned int), bootstrap, obj, 0, &threadID); if (hThread == 0) { /* I've seen errno == EAGAIN here, which means "there are * too many threads". */ int e = errno; dprintf(("%lu: PyThread_start_new_thread failed, errno %d\n", PyThread_get_thread_ident(), e)); threadID = (unsigned)-1; HeapFree(GetProcessHeap(), 0, obj); } else { dprintf(("%lu: PyThread_start_new_thread succeeded: %p\n", PyThread_get_thread_ident(), (void*)hThread)); CloseHandle(hThread); } return threadID; } /* * Return the thread Id instead of a handle. The Id is said to uniquely identify the * thread in the system */ unsigned long PyThread_get_thread_ident(void) { if (!initialized) PyThread_init_thread(); return GetCurrentThreadId(); } void PyThread_exit_thread(void) { dprintf(("%lu: PyThread_exit_thread called\n", PyThread_get_thread_ident())); if (!initialized) exit(0); _endthreadex(0); } /* * Lock support. It has to be implemented as semaphores. * I [Dag] tried to implement it with mutex but I could find a way to * tell whether a thread already own the lock or not. */ PyThread_type_lock PyThread_allocate_lock(void) { PNRMUTEX aLock; dprintf(("PyThread_allocate_lock called\n")); if (!initialized) PyThread_init_thread(); aLock = AllocNonRecursiveMutex() ; dprintf(("%lu: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock)); return (PyThread_type_lock) aLock; } void PyThread_free_lock(PyThread_type_lock aLock) { dprintf(("%lu: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock)); FreeNonRecursiveMutex(aLock) ; } /* * Return 1 on success if the lock was acquired * * and 0 if the lock was not acquired. This means a 0 is returned * if the lock has already been acquired by this thread! */ PyLockStatus PyThread_acquire_lock_timed(PyThread_type_lock aLock, PY_TIMEOUT_T microseconds, int intr_flag) { /* Fow now, intr_flag does nothing on Windows, and lock acquires are * uninterruptible. */ PyLockStatus success; PY_TIMEOUT_T milliseconds; if (microseconds >= 0) { milliseconds = microseconds / 1000; if (microseconds % 1000 > 0) ++milliseconds; if (milliseconds > PY_DWORD_MAX) { Py_FatalError("Timeout larger than PY_TIMEOUT_MAX"); } } else { milliseconds = INFINITE; } dprintf(("%lu: PyThread_acquire_lock_timed(%p, %lld) called\n", PyThread_get_thread_ident(), aLock, microseconds)); if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock, (DWORD)milliseconds) == WAIT_OBJECT_0) { success = PY_LOCK_ACQUIRED; } else { success = PY_LOCK_FAILURE; } dprintf(("%lu: PyThread_acquire_lock(%p, %lld) -> %d\n", PyThread_get_thread_ident(), aLock, microseconds, success)); return success; } int PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag) { return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0); } void PyThread_release_lock(PyThread_type_lock aLock) { dprintf(("%lu: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock)); if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock))) dprintf(("%lu: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError())); } /* minimum/maximum thread stack sizes supported */ #define THREAD_MIN_STACKSIZE 0x8000 /* 32 KiB */ #define THREAD_MAX_STACKSIZE 0x10000000 /* 256 MiB */ /* set the thread stack size. * Return 0 if size is valid, -1 otherwise. */ static int _pythread_nt_set_stacksize(size_t size) { /* set to default */ if (size == 0) { PyThreadState_GET()->interp->pythread_stacksize = 0; return 0; } /* valid range? */ if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) { PyThreadState_GET()->interp->pythread_stacksize = size; return 0; } return -1; } #define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x) /* Thread Local Storage (TLS) API This API is DEPRECATED since Python 3.7. See PEP 539 for details. */ int PyThread_create_key(void) { DWORD result = TlsAlloc(); if (result == TLS_OUT_OF_INDEXES) return -1; return (int)result; } void PyThread_delete_key(int key) { TlsFree(key); } int PyThread_set_key_value(int key, void *value) { BOOL ok = TlsSetValue(key, value); return ok ? 0 : -1; } void * PyThread_get_key_value(int key) { /* because TLS is used in the Py_END_ALLOW_THREAD macro, * it is necessary to preserve the windows error state, because * it is assumed to be preserved across the call to the macro. * Ideally, the macro should be fixed, but it is simpler to * do it here. */ DWORD error = GetLastError(); void *result = TlsGetValue(key); SetLastError(error); return result; } void PyThread_delete_key_value(int key) { /* NULL is used as "key missing", and it is also the default * given by TlsGetValue() if nothing has been set yet. */ TlsSetValue(key, NULL); } /* reinitialization of TLS is not necessary after fork when using * the native TLS functions. And forking isn't supported on Windows either. */ void PyThread_ReInitTLS(void) { } /* Thread Specific Storage (TSS) API Platform-specific components of TSS API implementation. */ int PyThread_tss_create(Py_tss_t *key) { assert(key != NULL); /* If the key has been created, function is silently skipped. */ if (key->_is_initialized) { return 0; } DWORD result = TlsAlloc(); if (result == TLS_OUT_OF_INDEXES) { return -1; } /* In Windows, platform-specific key type is DWORD. */ key->_key = result; key->_is_initialized = 1; return 0; } void PyThread_tss_delete(Py_tss_t *key) { assert(key != NULL); /* If the key has not been created, function is silently skipped. */ if (!key->_is_initialized) { return; } TlsFree(key->_key); key->_key = TLS_OUT_OF_INDEXES; key->_is_initialized = 0; } int PyThread_tss_set(Py_tss_t *key, void *value) { assert(key != NULL); BOOL ok = TlsSetValue(key->_key, value); return ok ? 0 : -1; } void * PyThread_tss_get(Py_tss_t *key) { assert(key != NULL); /* because TSS is used in the Py_END_ALLOW_THREAD macro, * it is necessary to preserve the windows error state, because * it is assumed to be preserved across the call to the macro. * Ideally, the macro should be fixed, but it is simpler to * do it here. */ DWORD error = GetLastError(); void *result = TlsGetValue(key->_key); SetLastError(error); return result; }