/*
 * Copyright (C) 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "perfetto/base/watchdog.h"

#include "gtest/gtest.h"
#include "perfetto/base/logging.h"
#include "perfetto/base/paged_memory.h"
#include "perfetto/base/scoped_file.h"
#include "perfetto/base/thread_utils.h"

#include <signal.h>
#include <time.h>

#include <condition_variable>
#include <map>
#include <memory>
#include <mutex>
#include <thread>
#include <vector>

namespace perfetto {
namespace base {
namespace {

class TestWatchdog : public Watchdog {
 public:
  explicit TestWatchdog(uint32_t polling_interval_ms)
      : Watchdog(polling_interval_ms) {}
  ~TestWatchdog() override {}
};

TEST(WatchdogTest, NoTimerCrashIfNotEnabled) {
  // CreateFatalTimer should be a noop if the watchdog is not enabled.
  TestWatchdog watchdog(100);
  auto handle = watchdog.CreateFatalTimer(1);
  usleep(100 * 1000);
}

TEST(WatchdogTest, TimerCrash) {
  // Create a timer for 20 ms and don't release wihin the time.
  EXPECT_DEATH(
      {
        TestWatchdog watchdog(100);
        watchdog.Start();
        auto handle = watchdog.CreateFatalTimer(20);
        usleep(200 * 1000);
      },
      "");
}

TEST(WatchdogTest, CrashEvenWhenMove) {
  std::map<int, Watchdog::Timer> timers;
  EXPECT_DEATH(
      {
        TestWatchdog watchdog(100);
        watchdog.Start();
        timers.emplace(0, watchdog.CreateFatalTimer(20));
        usleep(200 * 1000);
      },
      "");
}

TEST(WatchdogTest, CrashMemory) {
  EXPECT_DEATH(
      {
        // Allocate 8MB of data and use it to increase RSS.
        const size_t kSize = 8 * 1024 * 1024;
        auto void_ptr = PagedMemory::Allocate(kSize);
        volatile uint8_t* ptr = static_cast<volatile uint8_t*>(void_ptr.Get());
        for (size_t i = 0; i < kSize; i += sizeof(size_t)) {
          *reinterpret_cast<volatile size_t*>(&ptr[i]) = i;
        }

        TestWatchdog watchdog(5);
        watchdog.SetMemoryLimit(8 * 1024 * 1024, 25);
        watchdog.Start();

        // Sleep so that the watchdog has some time to pick it up.
        usleep(1000 * 1000);
      },
      "");
}

TEST(WatchdogTest, CrashCpu) {
  EXPECT_DEATH(
      {
        TestWatchdog watchdog(1);
        watchdog.SetCpuLimit(10, 25);
        watchdog.Start();
        volatile int x = 0;
        for (;;) {
          x++;
        }
      },
      "");
}

// The test below tests that the fatal timer signal is sent to the thread that
// created the timer and not a random one.

int RestoreSIGABRT(const struct sigaction* act) {
  return sigaction(SIGABRT, act, nullptr);
}

PlatformThreadID g_aborted_thread = 0;
void SIGABRTHandler(int) {
  g_aborted_thread = GetThreadId();
}

TEST(WatchdogTest, TimerCrashDeliveredToCallerThread) {
  // Setup a signal handler so that SIGABRT doesn't cause a crash but just
  // records the current thread id.
  struct sigaction oldact;
  struct sigaction newact = {};
  newact.sa_handler = SIGABRTHandler;
  ASSERT_EQ(sigaction(SIGABRT, &newact, &oldact), 0);
  base::ScopedResource<const struct sigaction*, RestoreSIGABRT, nullptr>
      auto_restore(&oldact);

  // Create 8 threads. All of them but one will just sleep. The selected one
  // will register a watchdog and fail.
  const size_t kKillThreadNum = 3;
  std::mutex mutex;
  std::condition_variable cv;
  bool quit = false;
  g_aborted_thread = 0;
  PlatformThreadID expected_tid = 0;

  auto thread_fn = [&mutex, &cv, &quit, &expected_tid](size_t thread_num) {
    if (thread_num == kKillThreadNum) {
      expected_tid = GetThreadId();
      TestWatchdog watchdog(100);
      watchdog.Start();
      auto handle = watchdog.CreateFatalTimer(2);
      usleep(200 * 1000);  // This will be interrupted by the fatal timer.
      std::unique_lock<std::mutex> lock(mutex);
      quit = true;
      cv.notify_all();
    } else {
      std::unique_lock<std::mutex> lock(mutex);
      cv.wait(lock, [&quit] { return quit; });
    }
  };

  std::vector<std::thread> threads;
  for (size_t i = 0; i < 8; i++)
    threads.emplace_back(thread_fn, i);

  // Join them all.
  for (auto& thread : threads)
    thread.join();

  EXPECT_EQ(g_aborted_thread, expected_tid);
}

}  // namespace
}  // namespace base
}  // namespace perfetto