/*
 * The copyright in this software is being made available under the 2-clauses
 * BSD License, included below. This software may be subject to other third
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
 * Copyright (c) 2002-2014, Professor Benoit Macq
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2007, Francois-Olivier Devaux
 * Copyright (c) 2003-2014, Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR
 * Copyright (c) 2012, CS Systemes d'Information, France
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#if defined(__SSE__) && !defined(_M_IX86) && !defined(__i386)
#define USE_SSE
#include <xmmintrin.h>
#endif
#if defined(__SSE2__) && !defined(_M_IX86) && !defined(__i386)
#define USE_SSE2
#include <emmintrin.h>
#endif
#if defined(__SSE4_1__) && !defined(_M_IX86) && !defined(__i386)
#define USE_SSE4
#include <smmintrin.h>
#endif

#include "opj_includes.h"

/* <summary> */
/* This table contains the norms of the basis function of the reversible MCT. */
/* </summary> */
static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 };

/* <summary> */
/* This table contains the norms of the basis function of the irreversible MCT. */
/* </summary> */
static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 };

const OPJ_FLOAT64 * opj_mct_get_mct_norms()
{
    return opj_mct_norms;
}

const OPJ_FLOAT64 * opj_mct_get_mct_norms_real()
{
    return opj_mct_norms_real;
}

/* <summary> */
/* Forward reversible MCT. */
/* </summary> */
#ifdef USE_SSE2
void opj_mct_encode(
    OPJ_INT32* OPJ_RESTRICT c0,
    OPJ_INT32* OPJ_RESTRICT c1,
    OPJ_INT32* OPJ_RESTRICT c2,
    OPJ_SIZE_T n)
{
    OPJ_SIZE_T i;
    const OPJ_SIZE_T len = n;
    /* buffer are aligned on 16 bytes */
    assert(((size_t)c0 & 0xf) == 0);
    assert(((size_t)c1 & 0xf) == 0);
    assert(((size_t)c2 & 0xf) == 0);

    for (i = 0; i < (len & ~3U); i += 4) {
        __m128i y, u, v;
        __m128i r = _mm_load_si128((const __m128i *) & (c0[i]));
        __m128i g = _mm_load_si128((const __m128i *) & (c1[i]));
        __m128i b = _mm_load_si128((const __m128i *) & (c2[i]));
        y = _mm_add_epi32(g, g);
        y = _mm_add_epi32(y, b);
        y = _mm_add_epi32(y, r);
        y = _mm_srai_epi32(y, 2);
        u = _mm_sub_epi32(b, g);
        v = _mm_sub_epi32(r, g);
        _mm_store_si128((__m128i *) & (c0[i]), y);
        _mm_store_si128((__m128i *) & (c1[i]), u);
        _mm_store_si128((__m128i *) & (c2[i]), v);
    }

    for (; i < len; ++i) {
        OPJ_INT32 r = c0[i];
        OPJ_INT32 g = c1[i];
        OPJ_INT32 b = c2[i];
        OPJ_INT32 y = (r + (g * 2) + b) >> 2;
        OPJ_INT32 u = b - g;
        OPJ_INT32 v = r - g;
        c0[i] = y;
        c1[i] = u;
        c2[i] = v;
    }
}
#else
void opj_mct_encode(
    OPJ_INT32* OPJ_RESTRICT c0,
    OPJ_INT32* OPJ_RESTRICT c1,
    OPJ_INT32* OPJ_RESTRICT c2,
    OPJ_SIZE_T n)
{
    OPJ_SIZE_T i;
    const OPJ_SIZE_T len = n;

    for (i = 0; i < len; ++i) {
        OPJ_INT32 r = c0[i];
        OPJ_INT32 g = c1[i];
        OPJ_INT32 b = c2[i];
        OPJ_INT32 y = (r + (g * 2) + b) >> 2;
        OPJ_INT32 u = b - g;
        OPJ_INT32 v = r - g;
        c0[i] = y;
        c1[i] = u;
        c2[i] = v;
    }
}
#endif

/* <summary> */
/* Inverse reversible MCT. */
/* </summary> */
#ifdef USE_SSE2
void opj_mct_decode(
    OPJ_INT32* OPJ_RESTRICT c0,
    OPJ_INT32* OPJ_RESTRICT c1,
    OPJ_INT32* OPJ_RESTRICT c2,
    OPJ_SIZE_T n)
{
    OPJ_SIZE_T i;
    const OPJ_SIZE_T len = n;

    for (i = 0; i < (len & ~3U); i += 4) {
        __m128i r, g, b;
        __m128i y = _mm_load_si128((const __m128i *) & (c0[i]));
        __m128i u = _mm_load_si128((const __m128i *) & (c1[i]));
        __m128i v = _mm_load_si128((const __m128i *) & (c2[i]));
        g = y;
        g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2));
        r = _mm_add_epi32(v, g);
        b = _mm_add_epi32(u, g);
        _mm_store_si128((__m128i *) & (c0[i]), r);
        _mm_store_si128((__m128i *) & (c1[i]), g);
        _mm_store_si128((__m128i *) & (c2[i]), b);
    }
    for (; i < len; ++i) {
        OPJ_INT32 y = c0[i];
        OPJ_INT32 u = c1[i];
        OPJ_INT32 v = c2[i];
        OPJ_INT32 g = y - ((u + v) >> 2);
        OPJ_INT32 r = v + g;
        OPJ_INT32 b = u + g;
        c0[i] = r;
        c1[i] = g;
        c2[i] = b;
    }
}
#else
void opj_mct_decode(
    OPJ_INT32* OPJ_RESTRICT c0,
    OPJ_INT32* OPJ_RESTRICT c1,
    OPJ_INT32* OPJ_RESTRICT c2,
    OPJ_SIZE_T n)
{
    OPJ_UINT32 i;
    for (i = 0; i < n; ++i) {
        OPJ_INT32 y = c0[i];
        OPJ_INT32 u = c1[i];
        OPJ_INT32 v = c2[i];
        OPJ_INT32 g = y - ((u + v) >> 2);
        OPJ_INT32 r = v + g;
        OPJ_INT32 b = u + g;
        c0[i] = r;
        c1[i] = g;
        c2[i] = b;
    }
}
#endif

/* <summary> */
/* Get norm of basis function of reversible MCT. */
/* </summary> */
OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno)
{
    return opj_mct_norms[compno];
}

/* <summary> */
/* Forward irreversible MCT. */
/* </summary> */
#ifdef USE_SSE4
void opj_mct_encode_real(
    OPJ_INT32* OPJ_RESTRICT c0,
    OPJ_INT32* OPJ_RESTRICT c1,
    OPJ_INT32* OPJ_RESTRICT c2,
    OPJ_SIZE_T n)
{
    OPJ_SIZE_T i;
    const OPJ_SIZE_T len = n;

    const __m128i ry = _mm_set1_epi32(2449);
    const __m128i gy = _mm_set1_epi32(4809);
    const __m128i by = _mm_set1_epi32(934);
    const __m128i ru = _mm_set1_epi32(1382);
    const __m128i gu = _mm_set1_epi32(2714);
    /* const __m128i bu = _mm_set1_epi32(4096); */
    /* const __m128i rv = _mm_set1_epi32(4096); */
    const __m128i gv = _mm_set1_epi32(3430);
    const __m128i bv = _mm_set1_epi32(666);
    const __m128i mulround = _mm_shuffle_epi32(_mm_cvtsi32_si128(4096),
                             _MM_SHUFFLE(1, 0, 1, 0));

    for (i = 0; i < (len & ~3U); i += 4) {
        __m128i lo, hi;
        __m128i y, u, v;
        __m128i r = _mm_load_si128((const __m128i *) & (c0[i]));
        __m128i g = _mm_load_si128((const __m128i *) & (c1[i]));
        __m128i b = _mm_load_si128((const __m128i *) & (c2[i]));

        lo = r;
        hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, ry);
        hi = _mm_mul_epi32(hi, ry);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        y = _mm_blend_epi16(lo, hi, 0xCC);

        lo = g;
        hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, gy);
        hi = _mm_mul_epi32(hi, gy);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC));

        lo = b;
        hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, by);
        hi = _mm_mul_epi32(hi, by);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC));
        _mm_store_si128((__m128i *) & (c0[i]), y);

        /*lo = b;
        hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, mulround);
        hi = _mm_mul_epi32(hi, mulround);*/
        lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 2, 0)));
        hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 3, 1)));
        lo = _mm_slli_epi64(lo, 12);
        hi = _mm_slli_epi64(hi, 12);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        u = _mm_blend_epi16(lo, hi, 0xCC);

        lo = r;
        hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, ru);
        hi = _mm_mul_epi32(hi, ru);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC));

        lo = g;
        hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, gu);
        hi = _mm_mul_epi32(hi, gu);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC));
        _mm_store_si128((__m128i *) & (c1[i]), u);

        /*lo = r;
        hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, mulround);
        hi = _mm_mul_epi32(hi, mulround);*/
        lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 2, 0)));
        hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 3, 1)));
        lo = _mm_slli_epi64(lo, 12);
        hi = _mm_slli_epi64(hi, 12);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        v = _mm_blend_epi16(lo, hi, 0xCC);

        lo = g;
        hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, gv);
        hi = _mm_mul_epi32(hi, gv);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC));

        lo = b;
        hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
        lo = _mm_mul_epi32(lo, bv);
        hi = _mm_mul_epi32(hi, bv);
        lo = _mm_add_epi64(lo, mulround);
        hi = _mm_add_epi64(hi, mulround);
        lo = _mm_srli_epi64(lo, 13);
        hi = _mm_slli_epi64(hi, 32 - 13);
        v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC));
        _mm_store_si128((__m128i *) & (c2[i]), v);
    }
    for (; i < len; ++i) {
        OPJ_INT32 r = c0[i];
        OPJ_INT32 g = c1[i];
        OPJ_INT32 b = c2[i];
        OPJ_INT32 y =  opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g,
                       4809) + opj_int_fix_mul(b, 934);
        OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g,
                      2714) + opj_int_fix_mul(b, 4096);
        OPJ_INT32 v =  opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g,
                       3430) - opj_int_fix_mul(b, 666);
        c0[i] = y;
        c1[i] = u;
        c2[i] = v;
    }
}
#else
void opj_mct_encode_real(
    OPJ_INT32* OPJ_RESTRICT c0,
    OPJ_INT32* OPJ_RESTRICT c1,
    OPJ_INT32* OPJ_RESTRICT c2,
    OPJ_SIZE_T n)
{
    OPJ_UINT32 i;
    for (i = 0; i < n; ++i) {
        OPJ_INT32 r = c0[i];
        OPJ_INT32 g = c1[i];
        OPJ_INT32 b = c2[i];
        OPJ_INT32 y =  opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g,
                       4809) + opj_int_fix_mul(b, 934);
        OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g,
                      2714) + opj_int_fix_mul(b, 4096);
        OPJ_INT32 v =  opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g,
                       3430) - opj_int_fix_mul(b, 666);
        c0[i] = y;
        c1[i] = u;
        c2[i] = v;
    }
}
#endif

/* <summary> */
/* Inverse irreversible MCT. */
/* </summary> */
void opj_mct_decode_real(
    OPJ_FLOAT32* OPJ_RESTRICT c0,
    OPJ_FLOAT32* OPJ_RESTRICT c1,
    OPJ_FLOAT32* OPJ_RESTRICT c2,
    OPJ_SIZE_T n)
{
    OPJ_UINT32 i;
#ifdef USE_SSE
    __m128 vrv, vgu, vgv, vbu;
    vrv = _mm_set1_ps(1.402f);
    vgu = _mm_set1_ps(0.34413f);
    vgv = _mm_set1_ps(0.71414f);
    vbu = _mm_set1_ps(1.772f);
    for (i = 0; i < (n >> 3); ++i) {
        __m128 vy, vu, vv;
        __m128 vr, vg, vb;

        vy = _mm_load_ps(c0);
        vu = _mm_load_ps(c1);
        vv = _mm_load_ps(c2);
        vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
        vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
        vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
        _mm_store_ps(c0, vr);
        _mm_store_ps(c1, vg);
        _mm_store_ps(c2, vb);
        c0 += 4;
        c1 += 4;
        c2 += 4;

        vy = _mm_load_ps(c0);
        vu = _mm_load_ps(c1);
        vv = _mm_load_ps(c2);
        vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
        vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
        vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
        _mm_store_ps(c0, vr);
        _mm_store_ps(c1, vg);
        _mm_store_ps(c2, vb);
        c0 += 4;
        c1 += 4;
        c2 += 4;
    }
    n &= 7;
#endif
    for (i = 0; i < n; ++i) {
        OPJ_FLOAT32 y = c0[i];
        OPJ_FLOAT32 u = c1[i];
        OPJ_FLOAT32 v = c2[i];
        OPJ_FLOAT32 r = y + (v * 1.402f);
        OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f));
        OPJ_FLOAT32 b = y + (u * 1.772f);
        c0[i] = r;
        c1[i] = g;
        c2[i] = b;
    }
}

/* <summary> */
/* Get norm of basis function of irreversible MCT. */
/* </summary> */
OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno)
{
    return opj_mct_norms_real[compno];
}


OPJ_BOOL opj_mct_encode_custom(
    OPJ_BYTE * pCodingdata,
    OPJ_SIZE_T n,
    OPJ_BYTE ** pData,
    OPJ_UINT32 pNbComp,
    OPJ_UINT32 isSigned)
{
    OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata;
    OPJ_SIZE_T i;
    OPJ_UINT32 j;
    OPJ_UINT32 k;
    OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp;
    OPJ_INT32 * lCurrentData = 00;
    OPJ_INT32 * lCurrentMatrix = 00;
    OPJ_INT32 ** lData = (OPJ_INT32 **) pData;
    OPJ_UINT32 lMultiplicator = 1 << 13;
    OPJ_INT32 * lMctPtr;

    OPJ_ARG_NOT_USED(isSigned);

    lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(
            OPJ_INT32));
    if (! lCurrentData) {
        return OPJ_FALSE;
    }

    lCurrentMatrix = lCurrentData + pNbComp;

    for (i = 0; i < lNbMatCoeff; ++i) {
        lCurrentMatrix[i] = (OPJ_INT32)(*(lMct++) * (OPJ_FLOAT32)lMultiplicator);
    }

    for (i = 0; i < n; ++i)  {
        lMctPtr = lCurrentMatrix;
        for (j = 0; j < pNbComp; ++j) {
            lCurrentData[j] = (*(lData[j]));
        }

        for (j = 0; j < pNbComp; ++j) {
            *(lData[j]) = 0;
            for (k = 0; k < pNbComp; ++k) {
                *(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]);
                ++lMctPtr;
            }

            ++lData[j];
        }
    }

    opj_free(lCurrentData);

    return OPJ_TRUE;
}

OPJ_BOOL opj_mct_decode_custom(
    OPJ_BYTE * pDecodingData,
    OPJ_SIZE_T n,
    OPJ_BYTE ** pData,
    OPJ_UINT32 pNbComp,
    OPJ_UINT32 isSigned)
{
    OPJ_FLOAT32 * lMct;
    OPJ_SIZE_T i;
    OPJ_UINT32 j;
    OPJ_UINT32 k;

    OPJ_FLOAT32 * lCurrentData = 00;
    OPJ_FLOAT32 * lCurrentResult = 00;
    OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;

    OPJ_ARG_NOT_USED(isSigned);

    lCurrentData = (OPJ_FLOAT32 *) opj_malloc(2 * pNbComp * sizeof(OPJ_FLOAT32));
    if (! lCurrentData) {
        return OPJ_FALSE;
    }
    lCurrentResult = lCurrentData + pNbComp;

    for (i = 0; i < n; ++i) {
        lMct = (OPJ_FLOAT32 *) pDecodingData;
        for (j = 0; j < pNbComp; ++j) {
            lCurrentData[j] = (OPJ_FLOAT32)(*(lData[j]));
        }
        for (j = 0; j < pNbComp; ++j) {
            lCurrentResult[j] = 0;
            for (k = 0; k < pNbComp; ++k) {
                lCurrentResult[j] += *(lMct++) * lCurrentData[k];
            }
            *(lData[j]++) = (OPJ_FLOAT32)(lCurrentResult[j]);
        }
    }
    opj_free(lCurrentData);
    return OPJ_TRUE;
}

void opj_calculate_norms(OPJ_FLOAT64 * pNorms,
                         OPJ_UINT32 pNbComps,
                         OPJ_FLOAT32 * pMatrix)
{
    OPJ_UINT32 i, j, lIndex;
    OPJ_FLOAT32 lCurrentValue;
    OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms;
    OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix;

    for (i = 0; i < pNbComps; ++i) {
        lNorms[i] = 0;
        lIndex = i;

        for (j = 0; j < pNbComps; ++j) {
            lCurrentValue = lMatrix[lIndex];
            lIndex += pNbComps;
            lNorms[i] += lCurrentValue * lCurrentValue;
        }
        lNorms[i] = sqrt(lNorms[i]);
    }
}