/************************************************************************** * * Copyright 2007 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * \file ffvertex_prog.c * * Create a vertex program to execute the current fixed function T&L pipeline. * \author Keith Whitwell */ #include "main/glheader.h" #include "main/mtypes.h" #include "main/macros.h" #include "main/enums.h" #include "main/ffvertex_prog.h" #include "program/program.h" #include "program/prog_cache.h" #include "program/prog_instruction.h" #include "program/prog_parameter.h" #include "program/prog_print.h" #include "program/prog_statevars.h" #include "util/bitscan.h" /** Max of number of lights and texture coord units */ #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS) struct state_key { unsigned light_color_material_mask:12; unsigned light_global_enabled:1; unsigned light_local_viewer:1; unsigned light_twoside:1; unsigned material_shininess_is_zero:1; unsigned need_eye_coords:1; unsigned normalize:1; unsigned rescale_normals:1; unsigned fog_source_is_depth:1; unsigned fog_distance_mode:2; unsigned separate_specular:1; unsigned point_attenuated:1; unsigned point_array:1; unsigned texture_enabled_global:1; unsigned fragprog_inputs_read:12; GLbitfield varying_vp_inputs; struct { unsigned light_enabled:1; unsigned light_eyepos3_is_zero:1; unsigned light_spotcutoff_is_180:1; unsigned light_attenuated:1; unsigned texunit_really_enabled:1; unsigned texmat_enabled:1; unsigned coord_replace:1; unsigned texgen_enabled:4; unsigned texgen_mode0:4; unsigned texgen_mode1:4; unsigned texgen_mode2:4; unsigned texgen_mode3:4; } unit[NUM_UNITS]; }; #define TXG_NONE 0 #define TXG_OBJ_LINEAR 1 #define TXG_EYE_LINEAR 2 #define TXG_SPHERE_MAP 3 #define TXG_REFLECTION_MAP 4 #define TXG_NORMAL_MAP 5 static GLuint translate_texgen( GLboolean enabled, GLenum mode ) { if (!enabled) return TXG_NONE; switch (mode) { case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR; case GL_EYE_LINEAR: return TXG_EYE_LINEAR; case GL_SPHERE_MAP: return TXG_SPHERE_MAP; case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP; case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP; default: return TXG_NONE; } } #define FDM_EYE_RADIAL 0 #define FDM_EYE_PLANE 1 #define FDM_EYE_PLANE_ABS 2 static GLuint translate_fog_distance_mode( GLenum mode ) { switch (mode) { case GL_EYE_RADIAL_NV: return FDM_EYE_RADIAL; case GL_EYE_PLANE: return FDM_EYE_PLANE; default: /* shouldn't happen; fall through to a sensible default */ case GL_EYE_PLANE_ABSOLUTE_NV: return FDM_EYE_PLANE_ABS; } } static GLboolean check_active_shininess( struct gl_context *ctx, const struct state_key *key, GLuint side ) { GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side; if ((key->varying_vp_inputs & VERT_BIT_COLOR0) && (key->light_color_material_mask & (1 << attr))) return GL_TRUE; if (key->varying_vp_inputs & VERT_BIT_GENERIC(attr)) return GL_TRUE; if (ctx->Light.Material.Attrib[attr][0] != 0.0F) return GL_TRUE; return GL_FALSE; } static void make_state_key( struct gl_context *ctx, struct state_key *key ) { const struct gl_program *fp = ctx->FragmentProgram._Current; GLbitfield mask; memset(key, 0, sizeof(struct state_key)); /* This now relies on texenvprogram.c being active: */ assert(fp); key->need_eye_coords = ctx->_NeedEyeCoords; key->fragprog_inputs_read = fp->info.inputs_read; key->varying_vp_inputs = ctx->varying_vp_inputs; if (ctx->RenderMode == GL_FEEDBACK) { /* make sure the vertprog emits color and tex0 */ key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0); } key->separate_specular = (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR); if (ctx->Light.Enabled) { key->light_global_enabled = 1; if (ctx->Light.Model.LocalViewer) key->light_local_viewer = 1; if (ctx->Light.Model.TwoSide) key->light_twoside = 1; if (ctx->Light.ColorMaterialEnabled) { key->light_color_material_mask = ctx->Light._ColorMaterialBitmask; } mask = ctx->Light._EnabledLights; while (mask) { const int i = u_bit_scan(&mask); struct gl_light *light = &ctx->Light.Light[i]; key->unit[i].light_enabled = 1; if (light->EyePosition[3] == 0.0F) key->unit[i].light_eyepos3_is_zero = 1; if (light->SpotCutoff == 180.0F) key->unit[i].light_spotcutoff_is_180 = 1; if (light->ConstantAttenuation != 1.0F || light->LinearAttenuation != 0.0F || light->QuadraticAttenuation != 0.0F) key->unit[i].light_attenuated = 1; } if (check_active_shininess(ctx, key, 0)) { key->material_shininess_is_zero = 0; } else if (key->light_twoside && check_active_shininess(ctx, key, 1)) { key->material_shininess_is_zero = 0; } else { key->material_shininess_is_zero = 1; } } if (ctx->Transform.Normalize) key->normalize = 1; if (ctx->Transform.RescaleNormals) key->rescale_normals = 1; if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) { key->fog_source_is_depth = 1; key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode); } if (ctx->Point._Attenuated) key->point_attenuated = 1; if (ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled) key->point_array = 1; if (ctx->Texture._TexGenEnabled || ctx->Texture._TexMatEnabled || ctx->Texture._MaxEnabledTexImageUnit != -1) key->texture_enabled_global = 1; mask = ctx->Texture._EnabledCoordUnits | ctx->Texture._TexGenEnabled | ctx->Texture._TexMatEnabled | ctx->Point.CoordReplace; while (mask) { const int i = u_bit_scan(&mask); struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i]; if (texUnit->_Current) key->unit[i].texunit_really_enabled = 1; if (ctx->Point.PointSprite) if (ctx->Point.CoordReplace & (1u << i)) key->unit[i].coord_replace = 1; if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i)) key->unit[i].texmat_enabled = 1; if (texUnit->TexGenEnabled) { key->unit[i].texgen_enabled = 1; key->unit[i].texgen_mode0 = translate_texgen( texUnit->TexGenEnabled & (1<<0), texUnit->GenS.Mode ); key->unit[i].texgen_mode1 = translate_texgen( texUnit->TexGenEnabled & (1<<1), texUnit->GenT.Mode ); key->unit[i].texgen_mode2 = translate_texgen( texUnit->TexGenEnabled & (1<<2), texUnit->GenR.Mode ); key->unit[i].texgen_mode3 = translate_texgen( texUnit->TexGenEnabled & (1<<3), texUnit->GenQ.Mode ); } } } /* Very useful debugging tool - produces annotated listing of * generated program with line/function references for each * instruction back into this file: */ #define DISASSEM 0 /* Use uregs to represent registers internally, translate to Mesa's * expected formats on emit. * * NOTE: These are passed by value extensively in this file rather * than as usual by pointer reference. If this disturbs you, try * remembering they are just 32bits in size. * * GCC is smart enough to deal with these dword-sized structures in * much the same way as if I had defined them as dwords and was using * macros to access and set the fields. This is much nicer and easier * to evolve. */ struct ureg { GLuint file:4; GLint idx:9; /* relative addressing may be negative */ /* sizeof(idx) should == sizeof(prog_src_reg::Index) */ GLuint negate:1; GLuint swz:12; GLuint pad:6; }; struct tnl_program { const struct state_key *state; struct gl_program *program; GLuint max_inst; /** number of instructions allocated for program */ GLboolean mvp_with_dp4; GLuint temp_in_use; GLuint temp_reserved; struct ureg eye_position; struct ureg eye_position_z; struct ureg eye_position_normalized; struct ureg transformed_normal; struct ureg identity; GLuint materials; GLuint color_materials; }; static const struct ureg undef = { PROGRAM_UNDEFINED, 0, 0, 0, 0 }; /* Local shorthand: */ #define X SWIZZLE_X #define Y SWIZZLE_Y #define Z SWIZZLE_Z #define W SWIZZLE_W /* Construct a ureg: */ static struct ureg make_ureg(GLuint file, GLint idx) { struct ureg reg; reg.file = file; reg.idx = idx; reg.negate = 0; reg.swz = SWIZZLE_NOOP; reg.pad = 0; return reg; } static struct ureg negate( struct ureg reg ) { reg.negate ^= 1; return reg; } static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w ) { reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x), GET_SWZ(reg.swz, y), GET_SWZ(reg.swz, z), GET_SWZ(reg.swz, w)); return reg; } static struct ureg swizzle1( struct ureg reg, int x ) { return swizzle(reg, x, x, x, x); } static struct ureg get_temp( struct tnl_program *p ) { int bit = ffs( ~p->temp_in_use ); if (!bit) { _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__); exit(1); } if ((GLuint) bit > p->program->arb.NumTemporaries) p->program->arb.NumTemporaries = bit; p->temp_in_use |= 1<<(bit-1); return make_ureg(PROGRAM_TEMPORARY, bit-1); } static struct ureg reserve_temp( struct tnl_program *p ) { struct ureg temp = get_temp( p ); p->temp_reserved |= 1<<temp.idx; return temp; } static void release_temp( struct tnl_program *p, struct ureg reg ) { if (reg.file == PROGRAM_TEMPORARY) { p->temp_in_use &= ~(1<<reg.idx); p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */ } } static void release_temps( struct tnl_program *p ) { p->temp_in_use = p->temp_reserved; } static struct ureg register_param5(struct tnl_program *p, GLint s0, GLint s1, GLint s2, GLint s3, GLint s4) { gl_state_index tokens[STATE_LENGTH]; GLint idx; tokens[0] = s0; tokens[1] = s1; tokens[2] = s2; tokens[3] = s3; tokens[4] = s4; idx = _mesa_add_state_reference(p->program->Parameters, tokens ); return make_ureg(PROGRAM_STATE_VAR, idx); } #define register_param1(p,s0) register_param5(p,s0,0,0,0,0) #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0) #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0) #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0) /** * \param input one of VERT_ATTRIB_x tokens. */ static struct ureg register_input( struct tnl_program *p, GLuint input ) { assert(input < VERT_ATTRIB_MAX); if (p->state->varying_vp_inputs & VERT_BIT(input)) { p->program->info.inputs_read |= VERT_BIT(input); return make_ureg(PROGRAM_INPUT, input); } else { return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input ); } } /** * \param input one of VARYING_SLOT_x tokens. */ static struct ureg register_output( struct tnl_program *p, GLuint output ) { p->program->info.outputs_written |= BITFIELD64_BIT(output); return make_ureg(PROGRAM_OUTPUT, output); } static struct ureg register_const4f( struct tnl_program *p, GLfloat s0, GLfloat s1, GLfloat s2, GLfloat s3) { gl_constant_value values[4]; GLint idx; GLuint swizzle; values[0].f = s0; values[1].f = s1; values[2].f = s2; values[3].f = s3; idx = _mesa_add_unnamed_constant(p->program->Parameters, values, 4, &swizzle ); assert(swizzle == SWIZZLE_NOOP); return make_ureg(PROGRAM_CONSTANT, idx); } #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1) #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0) #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1) #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1) static GLboolean is_undef( struct ureg reg ) { return reg.file == PROGRAM_UNDEFINED; } static struct ureg get_identity_param( struct tnl_program *p ) { if (is_undef(p->identity)) p->identity = register_const4f(p, 0,0,0,1); return p->identity; } static void register_matrix_param5( struct tnl_program *p, GLint s0, /* modelview, projection, etc */ GLint s1, /* texture matrix number */ GLint s2, /* first row */ GLint s3, /* last row */ GLint s4, /* inverse, transpose, etc */ struct ureg *matrix ) { GLint i; /* This is a bit sad as the support is there to pull the whole * matrix out in one go: */ for (i = 0; i <= s3 - s2; i++) matrix[i] = register_param5( p, s0, s1, i, i, s4 ); } static void emit_arg( struct prog_src_register *src, struct ureg reg ) { src->File = reg.file; src->Index = reg.idx; src->Swizzle = reg.swz; src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE; src->RelAddr = 0; /* Check that bitfield sizes aren't exceeded */ assert(src->Index == reg.idx); } static void emit_dst( struct prog_dst_register *dst, struct ureg reg, GLuint mask ) { dst->File = reg.file; dst->Index = reg.idx; /* allow zero as a shorthand for xyzw */ dst->WriteMask = mask ? mask : WRITEMASK_XYZW; /* Check that bitfield sizes aren't exceeded */ assert(dst->Index == reg.idx); } static void debug_insn( struct prog_instruction *inst, const char *fn, GLuint line ) { if (DISASSEM) { static const char *last_fn; if (fn != last_fn) { last_fn = fn; printf("%s:\n", fn); } printf("%d:\t", line); _mesa_print_instruction(inst); } } static void emit_op3fn(struct tnl_program *p, enum prog_opcode op, struct ureg dest, GLuint mask, struct ureg src0, struct ureg src1, struct ureg src2, const char *fn, GLuint line) { GLuint nr; struct prog_instruction *inst; assert(p->program->arb.NumInstructions <= p->max_inst); if (p->program->arb.NumInstructions == p->max_inst) { /* need to extend the program's instruction array */ struct prog_instruction *newInst; /* double the size */ p->max_inst *= 2; newInst = rzalloc_array(p->program, struct prog_instruction, p->max_inst); if (!newInst) { _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build"); return; } _mesa_copy_instructions(newInst, p->program->arb.Instructions, p->program->arb.NumInstructions); ralloc_free(p->program->arb.Instructions); p->program->arb.Instructions = newInst; } nr = p->program->arb.NumInstructions++; inst = &p->program->arb.Instructions[nr]; inst->Opcode = (enum prog_opcode) op; emit_arg( &inst->SrcReg[0], src0 ); emit_arg( &inst->SrcReg[1], src1 ); emit_arg( &inst->SrcReg[2], src2 ); emit_dst( &inst->DstReg, dest, mask ); debug_insn(inst, fn, line); } #define emit_op3(p, op, dst, mask, src0, src1, src2) \ emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__) #define emit_op2(p, op, dst, mask, src0, src1) \ emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__) #define emit_op1(p, op, dst, mask, src0) \ emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__) static struct ureg make_temp( struct tnl_program *p, struct ureg reg ) { if (reg.file == PROGRAM_TEMPORARY && !(p->temp_reserved & (1<<reg.idx))) return reg; else { struct ureg temp = get_temp(p); emit_op1(p, OPCODE_MOV, temp, 0, reg); return temp; } } /* Currently no tracking performed of input/output/register size or * active elements. Could be used to reduce these operations, as * could the matrix type. */ static void emit_matrix_transform_vec4( struct tnl_program *p, struct ureg dest, const struct ureg *mat, struct ureg src) { emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]); emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]); emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]); emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]); } /* This version is much easier to implement if writemasks are not * supported natively on the target or (like SSE), the target doesn't * have a clean/obvious dotproduct implementation. */ static void emit_transpose_matrix_transform_vec4( struct tnl_program *p, struct ureg dest, const struct ureg *mat, struct ureg src) { struct ureg tmp; if (dest.file != PROGRAM_TEMPORARY) tmp = get_temp(p); else tmp = dest; emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]); emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp); emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp); emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp); if (dest.file != PROGRAM_TEMPORARY) release_temp(p, tmp); } static void emit_matrix_transform_vec3( struct tnl_program *p, struct ureg dest, const struct ureg *mat, struct ureg src) { emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]); emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]); emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]); } static void emit_normalize_vec3( struct tnl_program *p, struct ureg dest, struct ureg src ) { struct ureg tmp = get_temp(p); emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src); emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp); emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X)); release_temp(p, tmp); } static void emit_passthrough( struct tnl_program *p, GLuint input, GLuint output ) { struct ureg out = register_output(p, output); emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input)); } static struct ureg get_eye_position( struct tnl_program *p ) { if (is_undef(p->eye_position)) { struct ureg pos = register_input( p, VERT_ATTRIB_POS ); struct ureg modelview[4]; p->eye_position = reserve_temp(p); if (p->mvp_with_dp4) { register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3, 0, modelview ); emit_matrix_transform_vec4(p, p->eye_position, modelview, pos); } else { register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3, STATE_MATRIX_TRANSPOSE, modelview ); emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos); } } return p->eye_position; } static struct ureg get_eye_position_z( struct tnl_program *p ) { if (!is_undef(p->eye_position)) return swizzle1(p->eye_position, Z); if (is_undef(p->eye_position_z)) { struct ureg pos = register_input( p, VERT_ATTRIB_POS ); struct ureg modelview[4]; p->eye_position_z = reserve_temp(p); register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3, 0, modelview ); emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]); } return p->eye_position_z; } static struct ureg get_eye_position_normalized( struct tnl_program *p ) { if (is_undef(p->eye_position_normalized)) { struct ureg eye = get_eye_position(p); p->eye_position_normalized = reserve_temp(p); emit_normalize_vec3(p, p->eye_position_normalized, eye); } return p->eye_position_normalized; } static struct ureg get_transformed_normal( struct tnl_program *p ) { if (is_undef(p->transformed_normal) && !p->state->need_eye_coords && !p->state->normalize && !(p->state->need_eye_coords == p->state->rescale_normals)) { p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL ); } else if (is_undef(p->transformed_normal)) { struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL ); struct ureg mvinv[3]; struct ureg transformed_normal = reserve_temp(p); if (p->state->need_eye_coords) { register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2, STATE_MATRIX_INVTRANS, mvinv ); /* Transform to eye space: */ emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal ); normal = transformed_normal; } /* Normalize/Rescale: */ if (p->state->normalize) { emit_normalize_vec3( p, transformed_normal, normal ); normal = transformed_normal; } else if (p->state->need_eye_coords == p->state->rescale_normals) { /* This is already adjusted for eye/non-eye rendering: */ struct ureg rescale = register_param2(p, STATE_INTERNAL, STATE_NORMAL_SCALE); emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale ); normal = transformed_normal; } assert(normal.file == PROGRAM_TEMPORARY); p->transformed_normal = normal; } return p->transformed_normal; } static void build_hpos( struct tnl_program *p ) { struct ureg pos = register_input( p, VERT_ATTRIB_POS ); struct ureg hpos = register_output( p, VARYING_SLOT_POS ); struct ureg mvp[4]; if (p->mvp_with_dp4) { register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3, 0, mvp ); emit_matrix_transform_vec4( p, hpos, mvp, pos ); } else { register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3, STATE_MATRIX_TRANSPOSE, mvp ); emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos ); } } static GLuint material_attrib( GLuint side, GLuint property ) { return (property - STATE_AMBIENT) * 2 + side; } /** * Get a bitmask of which material values vary on a per-vertex basis. */ static void set_material_flags( struct tnl_program *p ) { p->color_materials = 0; p->materials = 0; if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) { p->materials = p->color_materials = p->state->light_color_material_mask; } p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0); } static struct ureg get_material( struct tnl_program *p, GLuint side, GLuint property ) { GLuint attrib = material_attrib(side, property); if (p->color_materials & (1<<attrib)) return register_input(p, VERT_ATTRIB_COLOR0); else if (p->materials & (1<<attrib)) { /* Put material values in the GENERIC slots -- they are not used * for anything in fixed function mode. */ return register_input( p, attrib + VERT_ATTRIB_GENERIC0 ); } else return register_param3( p, STATE_MATERIAL, side, property ); } #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \ MAT_BIT_FRONT_AMBIENT | \ MAT_BIT_FRONT_DIFFUSE) << (side)) /** * Either return a precalculated constant value or emit code to * calculate these values dynamically in the case where material calls * are present between begin/end pairs. * * Probably want to shift this to the program compilation phase - if * we always emitted the calculation here, a smart compiler could * detect that it was constant (given a certain set of inputs), and * lift it out of the main loop. That way the programs created here * would be independent of the vertex_buffer details. */ static struct ureg get_scenecolor( struct tnl_program *p, GLuint side ) { if (p->materials & SCENE_COLOR_BITS(side)) { struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT); struct ureg material_emission = get_material(p, side, STATE_EMISSION); struct ureg material_ambient = get_material(p, side, STATE_AMBIENT); struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE); struct ureg tmp = make_temp(p, material_diffuse); emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient, material_ambient, material_emission); return tmp; } else return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side ); } static struct ureg get_lightprod( struct tnl_program *p, GLuint light, GLuint side, GLuint property ) { GLuint attrib = material_attrib(side, property); if (p->materials & (1<<attrib)) { struct ureg light_value = register_param3(p, STATE_LIGHT, light, property); struct ureg material_value = get_material(p, side, property); struct ureg tmp = get_temp(p); emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value); return tmp; } else return register_param4(p, STATE_LIGHTPROD, light, side, property); } static struct ureg calculate_light_attenuation( struct tnl_program *p, GLuint i, struct ureg VPpli, struct ureg dist ) { struct ureg attenuation = register_param3(p, STATE_LIGHT, i, STATE_ATTENUATION); struct ureg att = undef; /* Calculate spot attenuation: */ if (!p->state->unit[i].light_spotcutoff_is_180) { struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL, STATE_LIGHT_SPOT_DIR_NORMALIZED, i); struct ureg spot = get_temp(p); struct ureg slt = get_temp(p); att = get_temp(p); emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm); emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot); emit_op1(p, OPCODE_ABS, spot, 0, spot); emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W)); emit_op2(p, OPCODE_MUL, att, 0, slt, spot); release_temp(p, spot); release_temp(p, slt); } /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62): * * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero) */ if (p->state->unit[i].light_attenuated && !is_undef(dist)) { if (is_undef(att)) att = get_temp(p); /* 1/d,d,d,1/d */ emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist); /* 1,d,d*d,1/d */ emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y)); /* 1/dist-atten */ emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist); if (!p->state->unit[i].light_spotcutoff_is_180) { /* dist-atten */ emit_op1(p, OPCODE_RCP, dist, 0, dist); /* spot-atten * dist-atten */ emit_op2(p, OPCODE_MUL, att, 0, dist, att); } else { /* dist-atten */ emit_op1(p, OPCODE_RCP, att, 0, dist); } } return att; } /** * Compute: * lit.y = MAX(0, dots.x) * lit.z = SLT(0, dots.x) */ static void emit_degenerate_lit( struct tnl_program *p, struct ureg lit, struct ureg dots ) { struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */ /* Note that lit.x & lit.w will not be examined. Note also that * dots.xyzw == dots.xxxx. */ /* MAX lit, id, dots; */ emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots); /* result[2] = (in > 0 ? 1 : 0) * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0 */ emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots); } /* Need to add some addtional parameters to allow lighting in object * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye * space lighting. */ static void build_lighting( struct tnl_program *p ) { const GLboolean twoside = p->state->light_twoside; const GLboolean separate = p->state->separate_specular; GLuint nr_lights = 0, count = 0; struct ureg normal = get_transformed_normal(p); struct ureg lit = get_temp(p); struct ureg dots = get_temp(p); struct ureg _col0 = undef, _col1 = undef; struct ureg _bfc0 = undef, _bfc1 = undef; GLuint i; /* * NOTE: * dots.x = dot(normal, VPpli) * dots.y = dot(normal, halfAngle) * dots.z = back.shininess * dots.w = front.shininess */ for (i = 0; i < MAX_LIGHTS; i++) if (p->state->unit[i].light_enabled) nr_lights++; set_material_flags(p); { if (!p->state->material_shininess_is_zero) { struct ureg shininess = get_material(p, 0, STATE_SHININESS); emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X)); release_temp(p, shininess); } _col0 = make_temp(p, get_scenecolor(p, 0)); if (separate) _col1 = make_temp(p, get_identity_param(p)); else _col1 = _col0; } if (twoside) { if (!p->state->material_shininess_is_zero) { /* Note that we negate the back-face specular exponent here. * The negation will be un-done later in the back-face code below. */ struct ureg shininess = get_material(p, 1, STATE_SHININESS); emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z, negate(swizzle1(shininess,X))); release_temp(p, shininess); } _bfc0 = make_temp(p, get_scenecolor(p, 1)); if (separate) _bfc1 = make_temp(p, get_identity_param(p)); else _bfc1 = _bfc0; } /* If no lights, still need to emit the scenecolor. */ { struct ureg res0 = register_output( p, VARYING_SLOT_COL0 ); emit_op1(p, OPCODE_MOV, res0, 0, _col0); } if (separate) { struct ureg res1 = register_output( p, VARYING_SLOT_COL1 ); emit_op1(p, OPCODE_MOV, res1, 0, _col1); } if (twoside) { struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 ); emit_op1(p, OPCODE_MOV, res0, 0, _bfc0); } if (twoside && separate) { struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 ); emit_op1(p, OPCODE_MOV, res1, 0, _bfc1); } if (nr_lights == 0) { release_temps(p); return; } for (i = 0; i < MAX_LIGHTS; i++) { if (p->state->unit[i].light_enabled) { struct ureg half = undef; struct ureg att = undef, VPpli = undef; struct ureg dist = undef; count++; if (p->state->unit[i].light_eyepos3_is_zero) { VPpli = register_param3(p, STATE_INTERNAL, STATE_LIGHT_POSITION_NORMALIZED, i); } else { struct ureg Ppli = register_param3(p, STATE_INTERNAL, STATE_LIGHT_POSITION, i); struct ureg V = get_eye_position(p); VPpli = get_temp(p); dist = get_temp(p); /* Calculate VPpli vector */ emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V); /* Normalize VPpli. The dist value also used in * attenuation below. */ emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli); emit_op1(p, OPCODE_RSQ, dist, 0, dist); emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist); } /* Calculate attenuation: */ att = calculate_light_attenuation(p, i, VPpli, dist); release_temp(p, dist); /* Calculate viewer direction, or use infinite viewer: */ if (!p->state->material_shininess_is_zero) { if (p->state->light_local_viewer) { struct ureg eye_hat = get_eye_position_normalized(p); half = get_temp(p); emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat); emit_normalize_vec3(p, half, half); } else if (p->state->unit[i].light_eyepos3_is_zero) { half = register_param3(p, STATE_INTERNAL, STATE_LIGHT_HALF_VECTOR, i); } else { struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z); half = get_temp(p); emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir); emit_normalize_vec3(p, half, half); } } /* Calculate dot products: */ if (p->state->material_shininess_is_zero) { emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli); } else { emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli); emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half); } /* Front face lighting: */ { struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT); struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE); struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR); struct ureg res0, res1; GLuint mask0, mask1; if (count == nr_lights) { if (separate) { mask0 = WRITEMASK_XYZ; mask1 = WRITEMASK_XYZ; res0 = register_output( p, VARYING_SLOT_COL0 ); res1 = register_output( p, VARYING_SLOT_COL1 ); } else { mask0 = 0; mask1 = WRITEMASK_XYZ; res0 = _col0; res1 = register_output( p, VARYING_SLOT_COL0 ); } } else { mask0 = 0; mask1 = 0; res0 = _col0; res1 = _col1; } if (!is_undef(att)) { /* light is attenuated by distance */ emit_op1(p, OPCODE_LIT, lit, 0, dots); emit_op2(p, OPCODE_MUL, lit, 0, lit, att); emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0); } else if (!p->state->material_shininess_is_zero) { /* there's a non-zero specular term */ emit_op1(p, OPCODE_LIT, lit, 0, dots); emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0); } else { /* no attenutation, no specular */ emit_degenerate_lit(p, lit, dots); emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0); } emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0); emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1); release_temp(p, ambient); release_temp(p, diffuse); release_temp(p, specular); } /* Back face lighting: */ if (twoside) { struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT); struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE); struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR); struct ureg res0, res1; GLuint mask0, mask1; if (count == nr_lights) { if (separate) { mask0 = WRITEMASK_XYZ; mask1 = WRITEMASK_XYZ; res0 = register_output( p, VARYING_SLOT_BFC0 ); res1 = register_output( p, VARYING_SLOT_BFC1 ); } else { mask0 = 0; mask1 = WRITEMASK_XYZ; res0 = _bfc0; res1 = register_output( p, VARYING_SLOT_BFC0 ); } } else { res0 = _bfc0; res1 = _bfc1; mask0 = 0; mask1 = 0; } /* For the back face we need to negate the X and Y component * dot products. dots.Z has the negated back-face specular * exponent. We swizzle that into the W position. This * negation makes the back-face specular term positive again. */ dots = negate(swizzle(dots,X,Y,W,Z)); if (!is_undef(att)) { emit_op1(p, OPCODE_LIT, lit, 0, dots); emit_op2(p, OPCODE_MUL, lit, 0, lit, att); emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0); } else if (!p->state->material_shininess_is_zero) { emit_op1(p, OPCODE_LIT, lit, 0, dots); emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/ } else { emit_degenerate_lit(p, lit, dots); emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); } emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0); emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1); /* restore dots to its original state for subsequent lights * by negating and swizzling again. */ dots = negate(swizzle(dots,X,Y,W,Z)); release_temp(p, ambient); release_temp(p, diffuse); release_temp(p, specular); } release_temp(p, half); release_temp(p, VPpli); release_temp(p, att); } } release_temps( p ); } static void build_fog( struct tnl_program *p ) { struct ureg fog = register_output(p, VARYING_SLOT_FOGC); struct ureg input; if (p->state->fog_source_is_depth) { switch (p->state->fog_distance_mode) { case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */ input = get_eye_position(p); emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input); emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog); emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog); break; case FDM_EYE_PLANE: /* Z = Ze */ input = get_eye_position_z(p); emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input); break; case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */ input = get_eye_position_z(p); emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input); break; default: assert(!"Bad fog mode in build_fog()"); break; } } else { input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X); emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input); } emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p)); } static void build_reflect_texgen( struct tnl_program *p, struct ureg dest, GLuint writemask ) { struct ureg normal = get_transformed_normal(p); struct ureg eye_hat = get_eye_position_normalized(p); struct ureg tmp = get_temp(p); /* n.u */ emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat); /* 2n.u */ emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp); /* (-2n.u)n + u */ emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat); release_temp(p, tmp); } static void build_sphere_texgen( struct tnl_program *p, struct ureg dest, GLuint writemask ) { struct ureg normal = get_transformed_normal(p); struct ureg eye_hat = get_eye_position_normalized(p); struct ureg tmp = get_temp(p); struct ureg half = register_scalar_const(p, .5); struct ureg r = get_temp(p); struct ureg inv_m = get_temp(p); struct ureg id = get_identity_param(p); /* Could share the above calculations, but it would be * a fairly odd state for someone to set (both sphere and * reflection active for different texture coordinate * components. Of course - if two texture units enable * reflect and/or sphere, things start to tilt in favour * of seperating this out: */ /* n.u */ emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat); /* 2n.u */ emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp); /* (-2n.u)n + u */ emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat); /* r + 0,0,1 */ emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z)); /* rx^2 + ry^2 + (rz+1)^2 */ emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp); /* 2/m */ emit_op1(p, OPCODE_RSQ, tmp, 0, tmp); /* 1/m */ emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half); /* r/m + 1/2 */ emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half); release_temp(p, tmp); release_temp(p, r); release_temp(p, inv_m); } static void build_texture_transform( struct tnl_program *p ) { GLuint i, j; for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) { if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i))) continue; if (p->state->unit[i].coord_replace) continue; if (p->state->unit[i].texgen_enabled || p->state->unit[i].texmat_enabled) { GLuint texmat_enabled = p->state->unit[i].texmat_enabled; struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i); struct ureg out_texgen = undef; if (p->state->unit[i].texgen_enabled) { GLuint copy_mask = 0; GLuint sphere_mask = 0; GLuint reflect_mask = 0; GLuint normal_mask = 0; GLuint modes[4]; if (texmat_enabled) out_texgen = get_temp(p); else out_texgen = out; modes[0] = p->state->unit[i].texgen_mode0; modes[1] = p->state->unit[i].texgen_mode1; modes[2] = p->state->unit[i].texgen_mode2; modes[3] = p->state->unit[i].texgen_mode3; for (j = 0; j < 4; j++) { switch (modes[j]) { case TXG_OBJ_LINEAR: { struct ureg obj = register_input(p, VERT_ATTRIB_POS); struct ureg plane = register_param3(p, STATE_TEXGEN, i, STATE_TEXGEN_OBJECT_S + j); emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j, obj, plane ); break; } case TXG_EYE_LINEAR: { struct ureg eye = get_eye_position(p); struct ureg plane = register_param3(p, STATE_TEXGEN, i, STATE_TEXGEN_EYE_S + j); emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j, eye, plane ); break; } case TXG_SPHERE_MAP: sphere_mask |= WRITEMASK_X << j; break; case TXG_REFLECTION_MAP: reflect_mask |= WRITEMASK_X << j; break; case TXG_NORMAL_MAP: normal_mask |= WRITEMASK_X << j; break; case TXG_NONE: copy_mask |= WRITEMASK_X << j; } } if (sphere_mask) { build_sphere_texgen(p, out_texgen, sphere_mask); } if (reflect_mask) { build_reflect_texgen(p, out_texgen, reflect_mask); } if (normal_mask) { struct ureg normal = get_transformed_normal(p); emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal ); } if (copy_mask) { struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i); emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in ); } } if (texmat_enabled) { struct ureg texmat[4]; struct ureg in = (!is_undef(out_texgen) ? out_texgen : register_input(p, VERT_ATTRIB_TEX0+i)); if (p->mvp_with_dp4) { register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3, 0, texmat ); emit_matrix_transform_vec4( p, out, texmat, in ); } else { register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3, STATE_MATRIX_TRANSPOSE, texmat ); emit_transpose_matrix_transform_vec4( p, out, texmat, in ); } } release_temps(p); } else { emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i); } } } /** * Point size attenuation computation. */ static void build_atten_pointsize( struct tnl_program *p ) { struct ureg eye = get_eye_position_z(p); struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED); struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION); struct ureg out = register_output(p, VARYING_SLOT_PSIZ); struct ureg ut = get_temp(p); /* dist = |eyez| */ emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z)); /* p1 + dist * (p2 + dist * p3); */ emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y), swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y)); emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y), ut, swizzle1(state_attenuation, X)); /* 1 / sqrt(factor) */ emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut ); #if 0 /* out = pointSize / sqrt(factor) */ emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size); #else /* this is a good place to clamp the point size since there's likely * no hardware registers to clamp point size at rasterization time. */ emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size); emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y)); emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z)); #endif release_temp(p, ut); } /** * Pass-though per-vertex point size, from user's point size array. */ static void build_array_pointsize( struct tnl_program *p ) { struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE); struct ureg out = register_output(p, VARYING_SLOT_PSIZ); emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in); } static void build_tnl_program( struct tnl_program *p ) { /* Emit the program, starting with the modelview, projection transforms: */ build_hpos(p); /* Lighting calculations: */ if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) { if (p->state->light_global_enabled) build_lighting(p); else { if (p->state->fragprog_inputs_read & VARYING_BIT_COL0) emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0); if (p->state->fragprog_inputs_read & VARYING_BIT_COL1) emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1); } } if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC) build_fog(p); if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY) build_texture_transform(p); if (p->state->point_attenuated) build_atten_pointsize(p); else if (p->state->point_array) build_array_pointsize(p); /* Finish up: */ emit_op1(p, OPCODE_END, undef, 0, undef); /* Disassemble: */ if (DISASSEM) { printf ("\n"); } } static void create_new_program( const struct state_key *key, struct gl_program *program, GLboolean mvp_with_dp4, GLuint max_temps) { struct tnl_program p; memset(&p, 0, sizeof(p)); p.state = key; p.program = program; p.eye_position = undef; p.eye_position_z = undef; p.eye_position_normalized = undef; p.transformed_normal = undef; p.identity = undef; p.temp_in_use = 0; p.mvp_with_dp4 = mvp_with_dp4; if (max_temps >= sizeof(int) * 8) p.temp_reserved = 0; else p.temp_reserved = ~((1<<max_temps)-1); /* Start by allocating 32 instructions. * If we need more, we'll grow the instruction array as needed. */ p.max_inst = 32; p.program->arb.Instructions = rzalloc_array(program, struct prog_instruction, p.max_inst); p.program->String = NULL; p.program->arb.NumInstructions = p.program->arb.NumTemporaries = p.program->arb.NumParameters = p.program->arb.NumAttributes = p.program->arb.NumAddressRegs = 0; p.program->Parameters = _mesa_new_parameter_list(); p.program->info.inputs_read = 0; p.program->info.outputs_written = 0; build_tnl_program( &p ); } /** * Return a vertex program which implements the current fixed-function * transform/lighting/texgen operations. */ struct gl_program * _mesa_get_fixed_func_vertex_program(struct gl_context *ctx) { struct gl_program *prog; struct state_key key; /* Grab all the relevant state and put it in a single structure: */ make_state_key(ctx, &key); /* Look for an already-prepared program for this state: */ prog = _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key)); if (!prog) { /* OK, we'll have to build a new one */ if (0) printf("Build new TNL program\n"); prog = ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0, true); if (!prog) return NULL; create_new_program( &key, prog, ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS, ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps ); if (ctx->Driver.ProgramStringNotify) ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB, prog); _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache, &key, sizeof(key), prog); } return prog; }