/* * Copyright 2003 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * VMWARE AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Keith Whitwell <keithw@vmware.com> */ #include "pipe/p_config.h" #include "pipe/p_compiler.h" #include "util/u_memory.h" #include "util/u_math.h" #include "util/u_format.h" #include "translate.h" #if (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)) && !defined(PIPE_SUBSYSTEM_EMBEDDED) #include "rtasm/rtasm_cpu.h" #include "rtasm/rtasm_x86sse.h" #define X 0 #define Y 1 #define Z 2 #define W 3 struct translate_buffer { const void *base_ptr; uintptr_t stride; unsigned max_index; }; struct translate_buffer_variant { unsigned buffer_index; unsigned instance_divisor; void *ptr; /* updated either per vertex or per instance */ }; #define ELEMENT_BUFFER_INSTANCE_ID 1001 #define NUM_CONSTS 7 enum { CONST_IDENTITY, CONST_INV_127, CONST_INV_255, CONST_INV_32767, CONST_INV_65535, CONST_INV_2147483647, CONST_255 }; #define C(v) {(float)(v), (float)(v), (float)(v), (float)(v)} static float consts[NUM_CONSTS][4] = { {0, 0, 0, 1}, C(1.0 / 127.0), C(1.0 / 255.0), C(1.0 / 32767.0), C(1.0 / 65535.0), C(1.0 / 2147483647.0), C(255.0) }; #undef C struct translate_sse { struct translate translate; struct x86_function linear_func; struct x86_function elt_func; struct x86_function elt16_func; struct x86_function elt8_func; struct x86_function *func; PIPE_ALIGN_VAR(16) float consts[NUM_CONSTS][4]; int8_t reg_to_const[16]; int8_t const_to_reg[NUM_CONSTS]; struct translate_buffer buffer[TRANSLATE_MAX_ATTRIBS]; unsigned nr_buffers; /* Multiple buffer variants can map to a single buffer. */ struct translate_buffer_variant buffer_variant[TRANSLATE_MAX_ATTRIBS]; unsigned nr_buffer_variants; /* Multiple elements can map to a single buffer variant. */ unsigned element_to_buffer_variant[TRANSLATE_MAX_ATTRIBS]; boolean use_instancing; unsigned instance_id; unsigned start_instance; /* these are actually known values, but putting them in a struct * like this is helpful to keep them in sync across the file. */ struct x86_reg tmp_EAX; struct x86_reg tmp2_EDX; struct x86_reg src_ECX; struct x86_reg idx_ESI; /* either start+i or &elt[i] */ struct x86_reg machine_EDI; struct x86_reg outbuf_EBX; struct x86_reg count_EBP; /* decrements to zero */ }; static int get_offset(const void *a, const void *b) { return (const char *) b - (const char *) a; } static struct x86_reg get_const(struct translate_sse *p, unsigned id) { struct x86_reg reg; unsigned i; if (p->const_to_reg[id] >= 0) return x86_make_reg(file_XMM, p->const_to_reg[id]); for (i = 2; i < 8; ++i) { if (p->reg_to_const[i] < 0) break; } /* TODO: be smarter here */ if (i == 8) --i; reg = x86_make_reg(file_XMM, i); if (p->reg_to_const[i] >= 0) p->const_to_reg[p->reg_to_const[i]] = -1; p->reg_to_const[i] = id; p->const_to_reg[id] = i; /* TODO: this should happen outside the loop, if possible */ sse_movaps(p->func, reg, x86_make_disp(p->machine_EDI, get_offset(p, &p->consts[id][0]))); return reg; } /* load the data in a SSE2 register, padding with zeros */ static boolean emit_load_sse2(struct translate_sse *p, struct x86_reg data, struct x86_reg src, unsigned size) { struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1); struct x86_reg tmp = p->tmp_EAX; switch (size) { case 1: x86_movzx8(p->func, tmp, src); sse2_movd(p->func, data, tmp); break; case 2: x86_movzx16(p->func, tmp, src); sse2_movd(p->func, data, tmp); break; case 3: x86_movzx8(p->func, tmp, x86_make_disp(src, 2)); x86_shl_imm(p->func, tmp, 16); x86_mov16(p->func, tmp, src); sse2_movd(p->func, data, tmp); break; case 4: sse2_movd(p->func, data, src); break; case 6: sse2_movd(p->func, data, src); x86_movzx16(p->func, tmp, x86_make_disp(src, 4)); sse2_movd(p->func, tmpXMM, tmp); sse2_punpckldq(p->func, data, tmpXMM); break; case 8: sse2_movq(p->func, data, src); break; case 12: sse2_movq(p->func, data, src); sse2_movd(p->func, tmpXMM, x86_make_disp(src, 8)); sse2_punpcklqdq(p->func, data, tmpXMM); break; case 16: sse2_movdqu(p->func, data, src); break; default: return FALSE; } return TRUE; } /* this value can be passed for the out_chans argument */ #define CHANNELS_0001 5 /* this function will load #chans float values, and will * pad the register with zeroes at least up to out_chans. * * If out_chans is set to CHANNELS_0001, then the fourth * value will be padded with 1. Only pass this value if * chans < 4 or results are undefined. */ static void emit_load_float32(struct translate_sse *p, struct x86_reg data, struct x86_reg arg0, unsigned out_chans, unsigned chans) { switch (chans) { case 1: /* a 0 0 0 * a 0 0 1 */ sse_movss(p->func, data, arg0); if (out_chans == CHANNELS_0001) sse_orps(p->func, data, get_const(p, CONST_IDENTITY)); break; case 2: /* 0 0 0 1 * a b 0 1 */ if (out_chans == CHANNELS_0001) sse_shufps(p->func, data, get_const(p, CONST_IDENTITY), SHUF(X, Y, Z, W)); else if (out_chans > 2) sse_movlhps(p->func, data, get_const(p, CONST_IDENTITY)); sse_movlps(p->func, data, arg0); break; case 3: /* Have to jump through some hoops: * * c 0 0 0 * c 0 0 1 if out_chans == CHANNELS_0001 * 0 0 c 0/1 * a b c 0/1 */ sse_movss(p->func, data, x86_make_disp(arg0, 8)); if (out_chans == CHANNELS_0001) sse_shufps(p->func, data, get_const(p, CONST_IDENTITY), SHUF(X, Y, Z, W)); sse_shufps(p->func, data, data, SHUF(Y, Z, X, W)); sse_movlps(p->func, data, arg0); break; case 4: sse_movups(p->func, data, arg0); break; } } /* this function behaves like emit_load_float32, but loads 64-bit floating point numbers, converting them to 32-bit ones */ static void emit_load_float64to32(struct translate_sse *p, struct x86_reg data, struct x86_reg arg0, unsigned out_chans, unsigned chans) { struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1); switch (chans) { case 1: sse2_movsd(p->func, data, arg0); if (out_chans > 1) sse2_cvtpd2ps(p->func, data, data); else sse2_cvtsd2ss(p->func, data, data); if (out_chans == CHANNELS_0001) sse_shufps(p->func, data, get_const(p, CONST_IDENTITY), SHUF(X, Y, Z, W)); break; case 2: sse2_movupd(p->func, data, arg0); sse2_cvtpd2ps(p->func, data, data); if (out_chans == CHANNELS_0001) sse_shufps(p->func, data, get_const(p, CONST_IDENTITY), SHUF(X, Y, Z, W)); else if (out_chans > 2) sse_movlhps(p->func, data, get_const(p, CONST_IDENTITY)); break; case 3: sse2_movupd(p->func, data, arg0); sse2_cvtpd2ps(p->func, data, data); sse2_movsd(p->func, tmpXMM, x86_make_disp(arg0, 16)); if (out_chans > 3) sse2_cvtpd2ps(p->func, tmpXMM, tmpXMM); else sse2_cvtsd2ss(p->func, tmpXMM, tmpXMM); sse_movlhps(p->func, data, tmpXMM); if (out_chans == CHANNELS_0001) sse_orps(p->func, data, get_const(p, CONST_IDENTITY)); break; case 4: sse2_movupd(p->func, data, arg0); sse2_cvtpd2ps(p->func, data, data); sse2_movupd(p->func, tmpXMM, x86_make_disp(arg0, 16)); sse2_cvtpd2ps(p->func, tmpXMM, tmpXMM); sse_movlhps(p->func, data, tmpXMM); break; } } static void emit_mov64(struct translate_sse *p, struct x86_reg dst_gpr, struct x86_reg dst_xmm, struct x86_reg src_gpr, struct x86_reg src_xmm) { if (x86_target(p->func) != X86_32) x64_mov64(p->func, dst_gpr, src_gpr); else { /* TODO: when/on which CPUs is SSE2 actually better than SSE? */ if (x86_target_caps(p->func) & X86_SSE2) sse2_movq(p->func, dst_xmm, src_xmm); else sse_movlps(p->func, dst_xmm, src_xmm); } } static void emit_load64(struct translate_sse *p, struct x86_reg dst_gpr, struct x86_reg dst_xmm, struct x86_reg src) { emit_mov64(p, dst_gpr, dst_xmm, src, src); } static void emit_store64(struct translate_sse *p, struct x86_reg dst, struct x86_reg src_gpr, struct x86_reg src_xmm) { emit_mov64(p, dst, dst, src_gpr, src_xmm); } static void emit_mov128(struct translate_sse *p, struct x86_reg dst, struct x86_reg src) { if (x86_target_caps(p->func) & X86_SSE2) sse2_movdqu(p->func, dst, src); else sse_movups(p->func, dst, src); } /* TODO: this uses unaligned accesses liberally, which is great on Nehalem, * but may or may not be good on older processors * TODO: may perhaps want to use non-temporal stores here if possible */ static void emit_memcpy(struct translate_sse *p, struct x86_reg dst, struct x86_reg src, unsigned size) { struct x86_reg dataXMM = x86_make_reg(file_XMM, 0); struct x86_reg dataXMM2 = x86_make_reg(file_XMM, 1); struct x86_reg dataGPR = p->tmp_EAX; struct x86_reg dataGPR2 = p->tmp2_EDX; if (size < 8) { switch (size) { case 1: x86_mov8(p->func, dataGPR, src); x86_mov8(p->func, dst, dataGPR); break; case 2: x86_mov16(p->func, dataGPR, src); x86_mov16(p->func, dst, dataGPR); break; case 3: x86_mov16(p->func, dataGPR, src); x86_mov8(p->func, dataGPR2, x86_make_disp(src, 2)); x86_mov16(p->func, dst, dataGPR); x86_mov8(p->func, x86_make_disp(dst, 2), dataGPR2); break; case 4: x86_mov(p->func, dataGPR, src); x86_mov(p->func, dst, dataGPR); break; case 6: x86_mov(p->func, dataGPR, src); x86_mov16(p->func, dataGPR2, x86_make_disp(src, 4)); x86_mov(p->func, dst, dataGPR); x86_mov16(p->func, x86_make_disp(dst, 4), dataGPR2); break; } } else if (!(x86_target_caps(p->func) & X86_SSE)) { unsigned i = 0; assert((size & 3) == 0); for (i = 0; i < size; i += 4) { x86_mov(p->func, dataGPR, x86_make_disp(src, i)); x86_mov(p->func, x86_make_disp(dst, i), dataGPR); } } else { switch (size) { case 8: emit_load64(p, dataGPR, dataXMM, src); emit_store64(p, dst, dataGPR, dataXMM); break; case 12: emit_load64(p, dataGPR2, dataXMM, src); x86_mov(p->func, dataGPR, x86_make_disp(src, 8)); emit_store64(p, dst, dataGPR2, dataXMM); x86_mov(p->func, x86_make_disp(dst, 8), dataGPR); break; case 16: emit_mov128(p, dataXMM, src); emit_mov128(p, dst, dataXMM); break; case 24: emit_mov128(p, dataXMM, src); emit_load64(p, dataGPR, dataXMM2, x86_make_disp(src, 16)); emit_mov128(p, dst, dataXMM); emit_store64(p, x86_make_disp(dst, 16), dataGPR, dataXMM2); break; case 32: emit_mov128(p, dataXMM, src); emit_mov128(p, dataXMM2, x86_make_disp(src, 16)); emit_mov128(p, dst, dataXMM); emit_mov128(p, x86_make_disp(dst, 16), dataXMM2); break; default: assert(0); } } } static boolean translate_attr_convert(struct translate_sse *p, const struct translate_element *a, struct x86_reg src, struct x86_reg dst) { const struct util_format_description *input_desc = util_format_description(a->input_format); const struct util_format_description *output_desc = util_format_description(a->output_format); unsigned i; boolean id_swizzle = TRUE; unsigned swizzle[4] = { PIPE_SWIZZLE_NONE, PIPE_SWIZZLE_NONE, PIPE_SWIZZLE_NONE, PIPE_SWIZZLE_NONE }; unsigned needed_chans = 0; unsigned imms[2] = { 0, 0x3f800000 }; if (a->output_format == PIPE_FORMAT_NONE || a->input_format == PIPE_FORMAT_NONE) return FALSE; if (input_desc->channel[0].size & 7) return FALSE; if (input_desc->colorspace != output_desc->colorspace) return FALSE; for (i = 1; i < input_desc->nr_channels; ++i) { if (memcmp (&input_desc->channel[i], &input_desc->channel[0], sizeof(input_desc->channel[0]))) return FALSE; } for (i = 1; i < output_desc->nr_channels; ++i) { if (memcmp (&output_desc->channel[i], &output_desc->channel[0], sizeof(output_desc->channel[0]))) { return FALSE; } } for (i = 0; i < output_desc->nr_channels; ++i) { if (output_desc->swizzle[i] < 4) swizzle[output_desc->swizzle[i]] = input_desc->swizzle[i]; } if ((x86_target_caps(p->func) & X86_SSE) && (0 || a->output_format == PIPE_FORMAT_R32_FLOAT || a->output_format == PIPE_FORMAT_R32G32_FLOAT || a->output_format == PIPE_FORMAT_R32G32B32_FLOAT || a->output_format == PIPE_FORMAT_R32G32B32A32_FLOAT)) { struct x86_reg dataXMM = x86_make_reg(file_XMM, 0); for (i = 0; i < output_desc->nr_channels; ++i) { if (swizzle[i] == PIPE_SWIZZLE_0 && i >= input_desc->nr_channels) swizzle[i] = i; } for (i = 0; i < output_desc->nr_channels; ++i) { if (swizzle[i] < 4) needed_chans = MAX2(needed_chans, swizzle[i] + 1); if (swizzle[i] < PIPE_SWIZZLE_0 && swizzle[i] != i) id_swizzle = FALSE; } if (needed_chans > 0) { switch (input_desc->channel[0].type) { case UTIL_FORMAT_TYPE_UNSIGNED: if (!(x86_target_caps(p->func) & X86_SSE2)) return FALSE; emit_load_sse2(p, dataXMM, src, input_desc->channel[0].size * input_desc->nr_channels >> 3); /* TODO: add support for SSE4.1 pmovzx */ switch (input_desc->channel[0].size) { case 8: /* TODO: this may be inefficient due to get_identity() being * used both as a float and integer register. */ sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY)); sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY)); break; case 16: sse2_punpcklwd(p->func, dataXMM, get_const(p, CONST_IDENTITY)); break; case 32: /* we lose precision here */ sse2_psrld_imm(p->func, dataXMM, 1); break; default: return FALSE; } sse2_cvtdq2ps(p->func, dataXMM, dataXMM); if (input_desc->channel[0].normalized) { struct x86_reg factor; switch (input_desc->channel[0].size) { case 8: factor = get_const(p, CONST_INV_255); break; case 16: factor = get_const(p, CONST_INV_65535); break; case 32: factor = get_const(p, CONST_INV_2147483647); break; default: assert(0); factor.disp = 0; factor.file = 0; factor.idx = 0; factor.mod = 0; break; } sse_mulps(p->func, dataXMM, factor); } else if (input_desc->channel[0].size == 32) /* compensate for the bit we threw away to fit u32 into s32 */ sse_addps(p->func, dataXMM, dataXMM); break; case UTIL_FORMAT_TYPE_SIGNED: if (!(x86_target_caps(p->func) & X86_SSE2)) return FALSE; emit_load_sse2(p, dataXMM, src, input_desc->channel[0].size * input_desc->nr_channels >> 3); /* TODO: add support for SSE4.1 pmovsx */ switch (input_desc->channel[0].size) { case 8: sse2_punpcklbw(p->func, dataXMM, dataXMM); sse2_punpcklbw(p->func, dataXMM, dataXMM); sse2_psrad_imm(p->func, dataXMM, 24); break; case 16: sse2_punpcklwd(p->func, dataXMM, dataXMM); sse2_psrad_imm(p->func, dataXMM, 16); break; case 32: /* we lose precision here */ break; default: return FALSE; } sse2_cvtdq2ps(p->func, dataXMM, dataXMM); if (input_desc->channel[0].normalized) { struct x86_reg factor; switch (input_desc->channel[0].size) { case 8: factor = get_const(p, CONST_INV_127); break; case 16: factor = get_const(p, CONST_INV_32767); break; case 32: factor = get_const(p, CONST_INV_2147483647); break; default: assert(0); factor.disp = 0; factor.file = 0; factor.idx = 0; factor.mod = 0; break; } sse_mulps(p->func, dataXMM, factor); } break; break; case UTIL_FORMAT_TYPE_FLOAT: if (input_desc->channel[0].size != 32 && input_desc->channel[0].size != 64) { return FALSE; } if (swizzle[3] == PIPE_SWIZZLE_1 && input_desc->nr_channels <= 3) { swizzle[3] = PIPE_SWIZZLE_W; needed_chans = CHANNELS_0001; } switch (input_desc->channel[0].size) { case 32: emit_load_float32(p, dataXMM, src, needed_chans, input_desc->nr_channels); break; case 64: /* we lose precision here */ if (!(x86_target_caps(p->func) & X86_SSE2)) return FALSE; emit_load_float64to32(p, dataXMM, src, needed_chans, input_desc->nr_channels); break; default: return FALSE; } break; default: return FALSE; } if (!id_swizzle) { sse_shufps(p->func, dataXMM, dataXMM, SHUF(swizzle[0], swizzle[1], swizzle[2], swizzle[3])); } } if (output_desc->nr_channels >= 4 && swizzle[0] < PIPE_SWIZZLE_0 && swizzle[1] < PIPE_SWIZZLE_0 && swizzle[2] < PIPE_SWIZZLE_0 && swizzle[3] < PIPE_SWIZZLE_0) { sse_movups(p->func, dst, dataXMM); } else { if (output_desc->nr_channels >= 2 && swizzle[0] < PIPE_SWIZZLE_0 && swizzle[1] < PIPE_SWIZZLE_0) { sse_movlps(p->func, dst, dataXMM); } else { if (swizzle[0] < PIPE_SWIZZLE_0) { sse_movss(p->func, dst, dataXMM); } else { x86_mov_imm(p->func, dst, imms[swizzle[0] - PIPE_SWIZZLE_0]); } if (output_desc->nr_channels >= 2) { if (swizzle[1] < PIPE_SWIZZLE_0) { sse_shufps(p->func, dataXMM, dataXMM, SHUF(1, 1, 2, 3)); sse_movss(p->func, x86_make_disp(dst, 4), dataXMM); } else { x86_mov_imm(p->func, x86_make_disp(dst, 4), imms[swizzle[1] - PIPE_SWIZZLE_0]); } } } if (output_desc->nr_channels >= 3) { if (output_desc->nr_channels >= 4 && swizzle[2] < PIPE_SWIZZLE_0 && swizzle[3] < PIPE_SWIZZLE_0) { sse_movhps(p->func, x86_make_disp(dst, 8), dataXMM); } else { if (swizzle[2] < PIPE_SWIZZLE_0) { sse_shufps(p->func, dataXMM, dataXMM, SHUF(2, 2, 2, 3)); sse_movss(p->func, x86_make_disp(dst, 8), dataXMM); } else { x86_mov_imm(p->func, x86_make_disp(dst, 8), imms[swizzle[2] - PIPE_SWIZZLE_0]); } if (output_desc->nr_channels >= 4) { if (swizzle[3] < PIPE_SWIZZLE_0) { sse_shufps(p->func, dataXMM, dataXMM, SHUF(3, 3, 3, 3)); sse_movss(p->func, x86_make_disp(dst, 12), dataXMM); } else { x86_mov_imm(p->func, x86_make_disp(dst, 12), imms[swizzle[3] - PIPE_SWIZZLE_0]); } } } } } return TRUE; } else if ((x86_target_caps(p->func) & X86_SSE2) && input_desc->channel[0].size == 8 && output_desc->channel[0].size == 16 && output_desc->channel[0].normalized == input_desc->channel[0].normalized && (0 || (input_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED && output_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED) || (input_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED && output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) || (input_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED && output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED))) { struct x86_reg dataXMM = x86_make_reg(file_XMM, 0); struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1); struct x86_reg tmp = p->tmp_EAX; unsigned imms[2] = { 0, 1 }; for (i = 0; i < output_desc->nr_channels; ++i) { if (swizzle[i] == PIPE_SWIZZLE_0 && i >= input_desc->nr_channels) { swizzle[i] = i; } } for (i = 0; i < output_desc->nr_channels; ++i) { if (swizzle[i] < 4) needed_chans = MAX2(needed_chans, swizzle[i] + 1); if (swizzle[i] < PIPE_SWIZZLE_0 && swizzle[i] != i) id_swizzle = FALSE; } if (needed_chans > 0) { emit_load_sse2(p, dataXMM, src, input_desc->channel[0].size * input_desc->nr_channels >> 3); switch (input_desc->channel[0].type) { case UTIL_FORMAT_TYPE_UNSIGNED: if (input_desc->channel[0].normalized) { sse2_punpcklbw(p->func, dataXMM, dataXMM); if (output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) sse2_psrlw_imm(p->func, dataXMM, 1); } else sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY)); break; case UTIL_FORMAT_TYPE_SIGNED: if (input_desc->channel[0].normalized) { sse2_movq(p->func, tmpXMM, get_const(p, CONST_IDENTITY)); sse2_punpcklbw(p->func, tmpXMM, dataXMM); sse2_psllw_imm(p->func, dataXMM, 9); sse2_psrlw_imm(p->func, dataXMM, 8); sse2_por(p->func, tmpXMM, dataXMM); sse2_psrlw_imm(p->func, dataXMM, 7); sse2_por(p->func, tmpXMM, dataXMM); { struct x86_reg t = dataXMM; dataXMM = tmpXMM; tmpXMM = t; } } else { sse2_punpcklbw(p->func, dataXMM, dataXMM); sse2_psraw_imm(p->func, dataXMM, 8); } break; default: assert(0); } if (output_desc->channel[0].normalized) imms[1] = (output_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED) ? 0xffff : 0x7ffff; if (!id_swizzle) sse2_pshuflw(p->func, dataXMM, dataXMM, (swizzle[0] & 3) | ((swizzle[1] & 3) << 2) | ((swizzle[2] & 3) << 4) | ((swizzle[3] & 3) << 6)); } if (output_desc->nr_channels >= 4 && swizzle[0] < PIPE_SWIZZLE_0 && swizzle[1] < PIPE_SWIZZLE_0 && swizzle[2] < PIPE_SWIZZLE_0 && swizzle[3] < PIPE_SWIZZLE_0) { sse2_movq(p->func, dst, dataXMM); } else { if (swizzle[0] < PIPE_SWIZZLE_0) { if (output_desc->nr_channels >= 2 && swizzle[1] < PIPE_SWIZZLE_0) { sse2_movd(p->func, dst, dataXMM); } else { sse2_movd(p->func, tmp, dataXMM); x86_mov16(p->func, dst, tmp); if (output_desc->nr_channels >= 2) x86_mov16_imm(p->func, x86_make_disp(dst, 2), imms[swizzle[1] - PIPE_SWIZZLE_0]); } } else { if (output_desc->nr_channels >= 2 && swizzle[1] >= PIPE_SWIZZLE_0) { x86_mov_imm(p->func, dst, (imms[swizzle[1] - PIPE_SWIZZLE_0] << 16) | imms[swizzle[0] - PIPE_SWIZZLE_0]); } else { x86_mov16_imm(p->func, dst, imms[swizzle[0] - PIPE_SWIZZLE_0]); if (output_desc->nr_channels >= 2) { sse2_movd(p->func, tmp, dataXMM); x86_shr_imm(p->func, tmp, 16); x86_mov16(p->func, x86_make_disp(dst, 2), tmp); } } } if (output_desc->nr_channels >= 3) { if (swizzle[2] < PIPE_SWIZZLE_0) { if (output_desc->nr_channels >= 4 && swizzle[3] < PIPE_SWIZZLE_0) { sse2_psrlq_imm(p->func, dataXMM, 32); sse2_movd(p->func, x86_make_disp(dst, 4), dataXMM); } else { sse2_psrlq_imm(p->func, dataXMM, 32); sse2_movd(p->func, tmp, dataXMM); x86_mov16(p->func, x86_make_disp(dst, 4), tmp); if (output_desc->nr_channels >= 4) { x86_mov16_imm(p->func, x86_make_disp(dst, 6), imms[swizzle[3] - PIPE_SWIZZLE_0]); } } } else { if (output_desc->nr_channels >= 4 && swizzle[3] >= PIPE_SWIZZLE_0) { x86_mov_imm(p->func, x86_make_disp(dst, 4), (imms[swizzle[3] - PIPE_SWIZZLE_0] << 16) | imms[swizzle[2] - PIPE_SWIZZLE_0]); } else { x86_mov16_imm(p->func, x86_make_disp(dst, 4), imms[swizzle[2] - PIPE_SWIZZLE_0]); if (output_desc->nr_channels >= 4) { sse2_psrlq_imm(p->func, dataXMM, 48); sse2_movd(p->func, tmp, dataXMM); x86_mov16(p->func, x86_make_disp(dst, 6), tmp); } } } } } return TRUE; } else if (!memcmp(&output_desc->channel[0], &input_desc->channel[0], sizeof(output_desc->channel[0]))) { struct x86_reg tmp = p->tmp_EAX; unsigned i; if (input_desc->channel[0].size == 8 && input_desc->nr_channels == 4 && output_desc->nr_channels == 4 && swizzle[0] == PIPE_SWIZZLE_W && swizzle[1] == PIPE_SWIZZLE_Z && swizzle[2] == PIPE_SWIZZLE_Y && swizzle[3] == PIPE_SWIZZLE_X) { /* TODO: support movbe */ x86_mov(p->func, tmp, src); x86_bswap(p->func, tmp); x86_mov(p->func, dst, tmp); return TRUE; } for (i = 0; i < output_desc->nr_channels; ++i) { switch (output_desc->channel[0].size) { case 8: if (swizzle[i] >= PIPE_SWIZZLE_0) { unsigned v = 0; if (swizzle[i] == PIPE_SWIZZLE_1) { switch (output_desc->channel[0].type) { case UTIL_FORMAT_TYPE_UNSIGNED: v = output_desc->channel[0].normalized ? 0xff : 1; break; case UTIL_FORMAT_TYPE_SIGNED: v = output_desc->channel[0].normalized ? 0x7f : 1; break; default: return FALSE; } } x86_mov8_imm(p->func, x86_make_disp(dst, i * 1), v); } else { x86_mov8(p->func, tmp, x86_make_disp(src, swizzle[i] * 1)); x86_mov8(p->func, x86_make_disp(dst, i * 1), tmp); } break; case 16: if (swizzle[i] >= PIPE_SWIZZLE_0) { unsigned v = 0; if (swizzle[i] == PIPE_SWIZZLE_1) { switch (output_desc->channel[1].type) { case UTIL_FORMAT_TYPE_UNSIGNED: v = output_desc->channel[1].normalized ? 0xffff : 1; break; case UTIL_FORMAT_TYPE_SIGNED: v = output_desc->channel[1].normalized ? 0x7fff : 1; break; case UTIL_FORMAT_TYPE_FLOAT: v = 0x3c00; break; default: return FALSE; } } x86_mov16_imm(p->func, x86_make_disp(dst, i * 2), v); } else if (swizzle[i] == PIPE_SWIZZLE_0) { x86_mov16_imm(p->func, x86_make_disp(dst, i * 2), 0); } else { x86_mov16(p->func, tmp, x86_make_disp(src, swizzle[i] * 2)); x86_mov16(p->func, x86_make_disp(dst, i * 2), tmp); } break; case 32: if (swizzle[i] >= PIPE_SWIZZLE_0) { unsigned v = 0; if (swizzle[i] == PIPE_SWIZZLE_1) { switch (output_desc->channel[1].type) { case UTIL_FORMAT_TYPE_UNSIGNED: v = output_desc->channel[1].normalized ? 0xffffffff : 1; break; case UTIL_FORMAT_TYPE_SIGNED: v = output_desc->channel[1].normalized ? 0x7fffffff : 1; break; case UTIL_FORMAT_TYPE_FLOAT: v = 0x3f800000; break; default: return FALSE; } } x86_mov_imm(p->func, x86_make_disp(dst, i * 4), v); } else { x86_mov(p->func, tmp, x86_make_disp(src, swizzle[i] * 4)); x86_mov(p->func, x86_make_disp(dst, i * 4), tmp); } break; case 64: if (swizzle[i] >= PIPE_SWIZZLE_0) { unsigned l = 0; unsigned h = 0; if (swizzle[i] == PIPE_SWIZZLE_1) { switch (output_desc->channel[1].type) { case UTIL_FORMAT_TYPE_UNSIGNED: h = output_desc->channel[1].normalized ? 0xffffffff : 0; l = output_desc->channel[1].normalized ? 0xffffffff : 1; break; case UTIL_FORMAT_TYPE_SIGNED: h = output_desc->channel[1].normalized ? 0x7fffffff : 0; l = output_desc->channel[1].normalized ? 0xffffffff : 1; break; case UTIL_FORMAT_TYPE_FLOAT: h = 0x3ff00000; l = 0; break; default: return FALSE; } } x86_mov_imm(p->func, x86_make_disp(dst, i * 8), l); x86_mov_imm(p->func, x86_make_disp(dst, i * 8 + 4), h); } else { if (x86_target_caps(p->func) & X86_SSE) { struct x86_reg tmpXMM = x86_make_reg(file_XMM, 0); emit_load64(p, tmp, tmpXMM, x86_make_disp(src, swizzle[i] * 8)); emit_store64(p, x86_make_disp(dst, i * 8), tmp, tmpXMM); } else { x86_mov(p->func, tmp, x86_make_disp(src, swizzle[i] * 8)); x86_mov(p->func, x86_make_disp(dst, i * 8), tmp); x86_mov(p->func, tmp, x86_make_disp(src, swizzle[i] * 8 + 4)); x86_mov(p->func, x86_make_disp(dst, i * 8 + 4), tmp); } } break; default: return FALSE; } } return TRUE; } /* special case for draw's EMIT_4UB (RGBA) and EMIT_4UB_BGRA */ else if ((x86_target_caps(p->func) & X86_SSE2) && a->input_format == PIPE_FORMAT_R32G32B32A32_FLOAT && (0 || a->output_format == PIPE_FORMAT_B8G8R8A8_UNORM || a-> output_format == PIPE_FORMAT_R8G8B8A8_UNORM)) { struct x86_reg dataXMM = x86_make_reg(file_XMM, 0); /* load */ sse_movups(p->func, dataXMM, src); if (a->output_format == PIPE_FORMAT_B8G8R8A8_UNORM) { sse_shufps(p->func, dataXMM, dataXMM, SHUF(2, 1, 0, 3)); } /* scale by 255.0 */ sse_mulps(p->func, dataXMM, get_const(p, CONST_255)); /* pack and emit */ sse2_cvtps2dq(p->func, dataXMM, dataXMM); sse2_packssdw(p->func, dataXMM, dataXMM); sse2_packuswb(p->func, dataXMM, dataXMM); sse2_movd(p->func, dst, dataXMM); return TRUE; } return FALSE; } static boolean translate_attr(struct translate_sse *p, const struct translate_element *a, struct x86_reg src, struct x86_reg dst) { if (a->input_format == a->output_format) { emit_memcpy(p, dst, src, util_format_get_stride(a->input_format, 1)); return TRUE; } return translate_attr_convert(p, a, src, dst); } static boolean init_inputs(struct translate_sse *p, unsigned index_size) { unsigned i; struct x86_reg instance_id = x86_make_disp(p->machine_EDI, get_offset(p, &p->instance_id)); struct x86_reg start_instance = x86_make_disp(p->machine_EDI, get_offset(p, &p->start_instance)); for (i = 0; i < p->nr_buffer_variants; i++) { struct translate_buffer_variant *variant = &p->buffer_variant[i]; struct translate_buffer *buffer = &p->buffer[variant->buffer_index]; if (!index_size || variant->instance_divisor) { struct x86_reg buf_max_index = x86_make_disp(p->machine_EDI, get_offset(p, &buffer->max_index)); struct x86_reg buf_stride = x86_make_disp(p->machine_EDI, get_offset(p, &buffer->stride)); struct x86_reg buf_ptr = x86_make_disp(p->machine_EDI, get_offset(p, &variant->ptr)); struct x86_reg buf_base_ptr = x86_make_disp(p->machine_EDI, get_offset(p, &buffer->base_ptr)); struct x86_reg elt = p->idx_ESI; struct x86_reg tmp_EAX = p->tmp_EAX; /* Calculate pointer to first attrib: * base_ptr + stride * index, where index depends on instance divisor */ if (variant->instance_divisor) { struct x86_reg tmp_EDX = p->tmp2_EDX; /* Start with instance = instance_id * which is true if divisor is 1. */ x86_mov(p->func, tmp_EAX, instance_id); if (variant->instance_divisor != 1) { struct x86_reg tmp_ECX = p->src_ECX; /* TODO: Add x86_shr() to rtasm and use it whenever * instance divisor is power of two. */ x86_xor(p->func, tmp_EDX, tmp_EDX); x86_mov_reg_imm(p->func, tmp_ECX, variant->instance_divisor); x86_div(p->func, tmp_ECX); /* EAX = EDX:EAX / ECX */ } /* instance = (instance_id / divisor) + start_instance */ x86_mov(p->func, tmp_EDX, start_instance); x86_add(p->func, tmp_EAX, tmp_EDX); /* XXX we need to clamp the index here too, but to a * per-array max value, not the draw->pt.max_index value * that's being given to us via translate->set_buffer(). */ } else { x86_mov(p->func, tmp_EAX, elt); /* Clamp to max_index */ x86_cmp(p->func, tmp_EAX, buf_max_index); x86_cmovcc(p->func, tmp_EAX, buf_max_index, cc_AE); } x86_mov(p->func, p->tmp2_EDX, buf_stride); x64_rexw(p->func); x86_imul(p->func, tmp_EAX, p->tmp2_EDX); x64_rexw(p->func); x86_add(p->func, tmp_EAX, buf_base_ptr); x86_cmp(p->func, p->count_EBP, p->tmp_EAX); /* In the linear case, keep the buffer pointer instead of the * index number. */ if (!index_size && p->nr_buffer_variants == 1) { x64_rexw(p->func); x86_mov(p->func, elt, tmp_EAX); } else { x64_rexw(p->func); x86_mov(p->func, buf_ptr, tmp_EAX); } } } return TRUE; } static struct x86_reg get_buffer_ptr(struct translate_sse *p, unsigned index_size, unsigned var_idx, struct x86_reg elt) { if (var_idx == ELEMENT_BUFFER_INSTANCE_ID) { return x86_make_disp(p->machine_EDI, get_offset(p, &p->instance_id)); } if (!index_size && p->nr_buffer_variants == 1) { return p->idx_ESI; } else if (!index_size || p->buffer_variant[var_idx].instance_divisor) { struct x86_reg ptr = p->src_ECX; struct x86_reg buf_ptr = x86_make_disp(p->machine_EDI, get_offset(p, &p->buffer_variant[var_idx].ptr)); x64_rexw(p->func); x86_mov(p->func, ptr, buf_ptr); return ptr; } else { struct x86_reg ptr = p->src_ECX; const struct translate_buffer_variant *variant = &p->buffer_variant[var_idx]; struct x86_reg buf_stride = x86_make_disp(p->machine_EDI, get_offset(p, &p->buffer[variant->buffer_index].stride)); struct x86_reg buf_base_ptr = x86_make_disp(p->machine_EDI, get_offset(p, &p->buffer[variant->buffer_index].base_ptr)); struct x86_reg buf_max_index = x86_make_disp(p->machine_EDI, get_offset(p, &p->buffer[variant->buffer_index].max_index)); /* Calculate pointer to current attrib: */ switch (index_size) { case 1: x86_movzx8(p->func, ptr, elt); break; case 2: x86_movzx16(p->func, ptr, elt); break; case 4: x86_mov(p->func, ptr, elt); break; } /* Clamp to max_index */ x86_cmp(p->func, ptr, buf_max_index); x86_cmovcc(p->func, ptr, buf_max_index, cc_AE); x86_mov(p->func, p->tmp2_EDX, buf_stride); x64_rexw(p->func); x86_imul(p->func, ptr, p->tmp2_EDX); x64_rexw(p->func); x86_add(p->func, ptr, buf_base_ptr); return ptr; } } static boolean incr_inputs(struct translate_sse *p, unsigned index_size) { if (!index_size && p->nr_buffer_variants == 1) { const unsigned buffer_index = p->buffer_variant[0].buffer_index; struct x86_reg stride = x86_make_disp(p->machine_EDI, get_offset(p, &p->buffer[buffer_index].stride)); if (p->buffer_variant[0].instance_divisor == 0) { x64_rexw(p->func); x86_add(p->func, p->idx_ESI, stride); sse_prefetchnta(p->func, x86_make_disp(p->idx_ESI, 192)); } } else if (!index_size) { unsigned i; /* Is this worthwhile?? */ for (i = 0; i < p->nr_buffer_variants; i++) { struct translate_buffer_variant *variant = &p->buffer_variant[i]; struct x86_reg buf_ptr = x86_make_disp(p->machine_EDI, get_offset(p, &variant->ptr)); struct x86_reg buf_stride = x86_make_disp(p->machine_EDI, get_offset(p, &p->buffer[variant->buffer_index].stride)); if (variant->instance_divisor == 0) { x86_mov(p->func, p->tmp_EAX, buf_stride); x64_rexw(p->func); x86_add(p->func, p->tmp_EAX, buf_ptr); if (i == 0) sse_prefetchnta(p->func, x86_make_disp(p->tmp_EAX, 192)); x64_rexw(p->func); x86_mov(p->func, buf_ptr, p->tmp_EAX); } } } else { x64_rexw(p->func); x86_lea(p->func, p->idx_ESI, x86_make_disp(p->idx_ESI, index_size)); } return TRUE; } /* Build run( struct translate *machine, * unsigned start, * unsigned count, * void *output_buffer ) * or * run_elts( struct translate *machine, * unsigned *elts, * unsigned count, * void *output_buffer ) * * Lots of hardcoding * * EAX -- pointer to current output vertex * ECX -- pointer to current attribute * */ static boolean build_vertex_emit(struct translate_sse *p, struct x86_function *func, unsigned index_size) { int fixup, label; unsigned j; memset(p->reg_to_const, 0xff, sizeof(p->reg_to_const)); memset(p->const_to_reg, 0xff, sizeof(p->const_to_reg)); p->tmp_EAX = x86_make_reg(file_REG32, reg_AX); p->idx_ESI = x86_make_reg(file_REG32, reg_SI); p->outbuf_EBX = x86_make_reg(file_REG32, reg_BX); p->machine_EDI = x86_make_reg(file_REG32, reg_DI); p->count_EBP = x86_make_reg(file_REG32, reg_BP); p->tmp2_EDX = x86_make_reg(file_REG32, reg_DX); p->src_ECX = x86_make_reg(file_REG32, reg_CX); p->func = func; x86_init_func(p->func); if (x86_target(p->func) == X86_64_WIN64_ABI) { /* the ABI guarantees a 16-byte aligned 32-byte "shadow space" * above the return address */ sse2_movdqa(p->func, x86_make_disp(x86_make_reg(file_REG32, reg_SP), 8), x86_make_reg(file_XMM, 6)); sse2_movdqa(p->func, x86_make_disp(x86_make_reg(file_REG32, reg_SP), 24), x86_make_reg(file_XMM, 7)); } x86_push(p->func, p->outbuf_EBX); x86_push(p->func, p->count_EBP); /* on non-Win64 x86-64, these are already in the right registers */ if (x86_target(p->func) != X86_64_STD_ABI) { x86_push(p->func, p->machine_EDI); x86_push(p->func, p->idx_ESI); if (x86_target(p->func) != X86_32) { x64_mov64(p->func, p->machine_EDI, x86_fn_arg(p->func, 1)); x64_mov64(p->func, p->idx_ESI, x86_fn_arg(p->func, 2)); } else { x86_mov(p->func, p->machine_EDI, x86_fn_arg(p->func, 1)); x86_mov(p->func, p->idx_ESI, x86_fn_arg(p->func, 2)); } } x86_mov(p->func, p->count_EBP, x86_fn_arg(p->func, 3)); if (x86_target(p->func) != X86_32) x64_mov64(p->func, p->outbuf_EBX, x86_fn_arg(p->func, 6)); else x86_mov(p->func, p->outbuf_EBX, x86_fn_arg(p->func, 6)); /* Load instance ID. */ if (p->use_instancing) { x86_mov(p->func, p->tmp2_EDX, x86_fn_arg(p->func, 4)); x86_mov(p->func, x86_make_disp(p->machine_EDI, get_offset(p, &p->start_instance)), p->tmp2_EDX); x86_mov(p->func, p->tmp_EAX, x86_fn_arg(p->func, 5)); x86_mov(p->func, x86_make_disp(p->machine_EDI, get_offset(p, &p->instance_id)), p->tmp_EAX); } /* Get vertex count, compare to zero */ x86_xor(p->func, p->tmp_EAX, p->tmp_EAX); x86_cmp(p->func, p->count_EBP, p->tmp_EAX); fixup = x86_jcc_forward(p->func, cc_E); /* always load, needed or not: */ init_inputs(p, index_size); /* Note address for loop jump */ label = x86_get_label(p->func); { struct x86_reg elt = !index_size ? p->idx_ESI : x86_deref(p->idx_ESI); int last_variant = -1; struct x86_reg vb; for (j = 0; j < p->translate.key.nr_elements; j++) { const struct translate_element *a = &p->translate.key.element[j]; unsigned variant = p->element_to_buffer_variant[j]; /* Figure out source pointer address: */ if (variant != last_variant) { last_variant = variant; vb = get_buffer_ptr(p, index_size, variant, elt); } if (!translate_attr(p, a, x86_make_disp(vb, a->input_offset), x86_make_disp(p->outbuf_EBX, a->output_offset))) return FALSE; } /* Next output vertex: */ x64_rexw(p->func); x86_lea(p->func, p->outbuf_EBX, x86_make_disp(p->outbuf_EBX, p->translate.key.output_stride)); /* Incr index */ incr_inputs(p, index_size); } /* decr count, loop if not zero */ x86_dec(p->func, p->count_EBP); x86_jcc(p->func, cc_NZ, label); /* Exit mmx state? */ if (p->func->need_emms) mmx_emms(p->func); /* Land forward jump here: */ x86_fixup_fwd_jump(p->func, fixup); /* Pop regs and return */ if (x86_target(p->func) != X86_64_STD_ABI) { x86_pop(p->func, p->idx_ESI); x86_pop(p->func, p->machine_EDI); } x86_pop(p->func, p->count_EBP); x86_pop(p->func, p->outbuf_EBX); if (x86_target(p->func) == X86_64_WIN64_ABI) { sse2_movdqa(p->func, x86_make_reg(file_XMM, 6), x86_make_disp(x86_make_reg(file_REG32, reg_SP), 8)); sse2_movdqa(p->func, x86_make_reg(file_XMM, 7), x86_make_disp(x86_make_reg(file_REG32, reg_SP), 24)); } x86_ret(p->func); return TRUE; } static void translate_sse_set_buffer(struct translate *translate, unsigned buf, const void *ptr, unsigned stride, unsigned max_index) { struct translate_sse *p = (struct translate_sse *) translate; if (buf < p->nr_buffers) { p->buffer[buf].base_ptr = (char *) ptr; p->buffer[buf].stride = stride; p->buffer[buf].max_index = max_index; } if (0) debug_printf("%s %d/%d: %p %d\n", __FUNCTION__, buf, p->nr_buffers, ptr, stride); } static void translate_sse_release(struct translate *translate) { struct translate_sse *p = (struct translate_sse *) translate; x86_release_func(&p->elt8_func); x86_release_func(&p->elt16_func); x86_release_func(&p->elt_func); x86_release_func(&p->linear_func); os_free_aligned(p); } struct translate * translate_sse2_create(const struct translate_key *key) { struct translate_sse *p = NULL; unsigned i; /* this is misnamed, it actually refers to whether rtasm is enabled or not */ if (!rtasm_cpu_has_sse()) goto fail; p = os_malloc_aligned(sizeof(struct translate_sse), 16); if (!p) goto fail; memset(p, 0, sizeof(*p)); memcpy(p->consts, consts, sizeof(consts)); p->translate.key = *key; p->translate.release = translate_sse_release; p->translate.set_buffer = translate_sse_set_buffer; assert(key->nr_elements <= TRANSLATE_MAX_ATTRIBS); for (i = 0; i < key->nr_elements; i++) { if (key->element[i].type == TRANSLATE_ELEMENT_NORMAL) { unsigned j; p->nr_buffers = MAX2(p->nr_buffers, key->element[i].input_buffer + 1); if (key->element[i].instance_divisor) { p->use_instancing = TRUE; } /* * Map vertex element to vertex buffer variant. */ for (j = 0; j < p->nr_buffer_variants; j++) { if (p->buffer_variant[j].buffer_index == key->element[i].input_buffer && p->buffer_variant[j].instance_divisor == key->element[i].instance_divisor) { break; } } if (j == p->nr_buffer_variants) { p->buffer_variant[j].buffer_index = key->element[i].input_buffer; p->buffer_variant[j].instance_divisor = key->element[i].instance_divisor; p->nr_buffer_variants++; } p->element_to_buffer_variant[i] = j; } else { assert(key->element[i].type == TRANSLATE_ELEMENT_INSTANCE_ID); p->element_to_buffer_variant[i] = ELEMENT_BUFFER_INSTANCE_ID; } } if (0) debug_printf("nr_buffers: %d\n", p->nr_buffers); if (!build_vertex_emit(p, &p->linear_func, 0)) goto fail; if (!build_vertex_emit(p, &p->elt_func, 4)) goto fail; if (!build_vertex_emit(p, &p->elt16_func, 2)) goto fail; if (!build_vertex_emit(p, &p->elt8_func, 1)) goto fail; p->translate.run = (run_func) x86_get_func(&p->linear_func); if (p->translate.run == NULL) goto fail; p->translate.run_elts = (run_elts_func) x86_get_func(&p->elt_func); if (p->translate.run_elts == NULL) goto fail; p->translate.run_elts16 = (run_elts16_func) x86_get_func(&p->elt16_func); if (p->translate.run_elts16 == NULL) goto fail; p->translate.run_elts8 = (run_elts8_func) x86_get_func(&p->elt8_func); if (p->translate.run_elts8 == NULL) goto fail; return &p->translate; fail: if (p) translate_sse_release(&p->translate); return NULL; } #else struct translate * translate_sse2_create(const struct translate_key *key) { return NULL; } #endif