/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <gtest/gtest.h> #include "ir.h" #include "ir_array_refcount.h" #include "ir_builder.h" #include "util/hash_table.h" using namespace ir_builder; class array_refcount_test : public ::testing::Test { public: virtual void SetUp(); virtual void TearDown(); exec_list instructions; ir_factory *body; void *mem_ctx; /** * glsl_type for a vec4[3][4][5]. * * The exceptionally verbose name is picked because it matches the syntax * of http://cdecl.org/. */ const glsl_type *array_3_of_array_4_of_array_5_of_vec4; /** * glsl_type for a int[3]. * * The exceptionally verbose name is picked because it matches the syntax * of http://cdecl.org/. */ const glsl_type *array_3_of_int; /** * Wrapper to access private member "bits" of ir_array_refcount_entry * * The test class is a friend to ir_array_refcount_entry, but the * individual tests are not part of the class. Since the friendliness of * the test class does not extend to the tests, provide a wrapper. */ const BITSET_WORD *get_bits(const ir_array_refcount_entry &entry) { return entry.bits; } /** * Wrapper to access private member "num_bits" of ir_array_refcount_entry * * The test class is a friend to ir_array_refcount_entry, but the * individual tests are not part of the class. Since the friendliness of * the test class does not extend to the tests, provide a wrapper. */ unsigned get_num_bits(const ir_array_refcount_entry &entry) { return entry.num_bits; } /** * Wrapper to access private member "array_depth" of ir_array_refcount_entry * * The test class is a friend to ir_array_refcount_entry, but the * individual tests are not part of the class. Since the friendliness of * the test class does not extend to the tests, provide a wrapper. */ unsigned get_array_depth(const ir_array_refcount_entry &entry) { return entry.array_depth; } }; void array_refcount_test::SetUp() { mem_ctx = ralloc_context(NULL); instructions.make_empty(); body = new ir_factory(&instructions, mem_ctx); /* The type of vec4 x[3][4][5]; */ const glsl_type *const array_5_of_vec4 = glsl_type::get_array_instance(glsl_type::vec4_type, 5); const glsl_type *const array_4_of_array_5_of_vec4 = glsl_type::get_array_instance(array_5_of_vec4, 4); array_3_of_array_4_of_array_5_of_vec4 = glsl_type::get_array_instance(array_4_of_array_5_of_vec4, 3); array_3_of_int = glsl_type::get_array_instance(glsl_type::int_type, 3); } void array_refcount_test::TearDown() { delete body; body = NULL; ralloc_free(mem_ctx); mem_ctx = NULL; } static operand deref_array(operand array, operand index) { void *mem_ctx = ralloc_parent(array.val); ir_rvalue *val = new(mem_ctx) ir_dereference_array(array.val, index.val); return operand(val); } static operand deref_struct(operand s, const char *field) { void *mem_ctx = ralloc_parent(s.val); ir_rvalue *val = new(mem_ctx) ir_dereference_record(s.val, field); return operand(val); } /** * Verify that only the specified set of ir_variables exists in the hash table */ static void validate_variables_in_hash_table(struct hash_table *ht, unsigned count, ...) { ir_variable **vars = new ir_variable *[count]; va_list args; /* Make a copy of the list of expected ir_variables. The copied list can * be modified during the checking. */ va_start(args, count); for (unsigned i = 0; i < count; i++) vars[i] = va_arg(args, ir_variable *); va_end(args); struct hash_entry *entry; hash_table_foreach(ht, entry) { const ir_instruction *const ir = (ir_instruction *) entry->key; const ir_variable *const v = ir->as_variable(); if (v == NULL) { ADD_FAILURE() << "Invalid junk in hash table: ir_type = " << ir->ir_type << ", address = " << (void *) ir; continue; } unsigned i; for (i = 0; i < count; i++) { if (vars[i] == NULL) continue; if (vars[i] == v) break; } if (i == count) { ADD_FAILURE() << "Invalid variable in hash table: \"" << v->name << "\""; } else { /* As each variable is encountered, remove it from the set. Don't * bother compacting the set because we don't care about * performance here. */ vars[i] = NULL; } } /* Check that there's nothing left in the set. */ for (unsigned i = 0; i < count; i++) { if (vars[i] != NULL) { ADD_FAILURE() << "Variable was not in the hash table: \"" << vars[i]->name << "\""; } } delete [] vars; } TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_scalar) { ir_variable *const var = new(mem_ctx) ir_variable(glsl_type::int_type, "a", ir_var_auto); ir_array_refcount_entry entry(var); ASSERT_NE((void *)0, get_bits(entry)); EXPECT_FALSE(entry.is_referenced); EXPECT_EQ(1, get_num_bits(entry)); EXPECT_EQ(0, get_array_depth(entry)); EXPECT_FALSE(entry.is_linearized_index_referenced(0)); } TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_vector) { ir_variable *const var = new(mem_ctx) ir_variable(glsl_type::vec4_type, "a", ir_var_auto); ir_array_refcount_entry entry(var); ASSERT_NE((void *)0, get_bits(entry)); EXPECT_FALSE(entry.is_referenced); EXPECT_EQ(1, get_num_bits(entry)); EXPECT_EQ(0, get_array_depth(entry)); EXPECT_FALSE(entry.is_linearized_index_referenced(0)); } TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_matrix) { ir_variable *const var = new(mem_ctx) ir_variable(glsl_type::mat4_type, "a", ir_var_auto); ir_array_refcount_entry entry(var); ASSERT_NE((void *)0, get_bits(entry)); EXPECT_FALSE(entry.is_referenced); EXPECT_EQ(1, get_num_bits(entry)); EXPECT_EQ(0, get_array_depth(entry)); EXPECT_FALSE(entry.is_linearized_index_referenced(0)); } TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_array) { ir_variable *const var = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "a", ir_var_auto); const unsigned total_elements = var->type->arrays_of_arrays_size(); ir_array_refcount_entry entry(var); ASSERT_NE((void *)0, get_bits(entry)); EXPECT_FALSE(entry.is_referenced); EXPECT_EQ(total_elements, get_num_bits(entry)); EXPECT_EQ(3, get_array_depth(entry)); for (unsigned i = 0; i < total_elements; i++) EXPECT_FALSE(entry.is_linearized_index_referenced(i)) << "index = " << i; } TEST_F(array_refcount_test, mark_array_elements_referenced_simple) { ir_variable *const var = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "a", ir_var_auto); const unsigned total_elements = var->type->arrays_of_arrays_size(); ir_array_refcount_entry entry(var); static const array_deref_range dr[] = { { 0, 5 }, { 1, 4 }, { 2, 3 } }; const unsigned accessed_element = 0 + (1 * 5) + (2 * 4 * 5); entry.mark_array_elements_referenced(dr, 3); for (unsigned i = 0; i < total_elements; i++) EXPECT_EQ(i == accessed_element, entry.is_linearized_index_referenced(i)); } TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_array) { ir_variable *const var = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "a", ir_var_auto); ir_array_refcount_entry entry(var); static const array_deref_range dr[] = { { 0, 5 }, { 1, 4 }, { 3, 3 } }; entry.mark_array_elements_referenced(dr, 3); for (unsigned i = 0; i < 3; i++) { for (unsigned j = 0; j < 4; j++) { for (unsigned k = 0; k < 5; k++) { const bool accessed = (j == 1) && (k == 0); const unsigned linearized_index = k + (j * 5) + (i * 4 * 5); EXPECT_EQ(accessed, entry.is_linearized_index_referenced(linearized_index)); } } } } TEST_F(array_refcount_test, mark_array_elements_referenced_whole_second_array) { ir_variable *const var = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "a", ir_var_auto); ir_array_refcount_entry entry(var); static const array_deref_range dr[] = { { 0, 5 }, { 4, 4 }, { 1, 3 } }; entry.mark_array_elements_referenced(dr, 3); for (unsigned i = 0; i < 3; i++) { for (unsigned j = 0; j < 4; j++) { for (unsigned k = 0; k < 5; k++) { const bool accessed = (i == 1) && (k == 0); const unsigned linearized_index = k + (j * 5) + (i * 4 * 5); EXPECT_EQ(accessed, entry.is_linearized_index_referenced(linearized_index)); } } } } TEST_F(array_refcount_test, mark_array_elements_referenced_whole_third_array) { ir_variable *const var = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "a", ir_var_auto); ir_array_refcount_entry entry(var); static const array_deref_range dr[] = { { 5, 5 }, { 2, 4 }, { 1, 3 } }; entry.mark_array_elements_referenced(dr, 3); for (unsigned i = 0; i < 3; i++) { for (unsigned j = 0; j < 4; j++) { for (unsigned k = 0; k < 5; k++) { const bool accessed = (i == 1) && (j == 2); const unsigned linearized_index = k + (j * 5) + (i * 4 * 5); EXPECT_EQ(accessed, entry.is_linearized_index_referenced(linearized_index)); } } } } TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_and_third_arrays) { ir_variable *const var = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "a", ir_var_auto); ir_array_refcount_entry entry(var); static const array_deref_range dr[] = { { 5, 5 }, { 3, 4 }, { 3, 3 } }; entry.mark_array_elements_referenced(dr, 3); for (unsigned i = 0; i < 3; i++) { for (unsigned j = 0; j < 4; j++) { for (unsigned k = 0; k < 5; k++) { const bool accessed = (j == 3); const unsigned linearized_index = k + (j * 5) + (i * 4 * 5); EXPECT_EQ(accessed, entry.is_linearized_index_referenced(linearized_index)); } } } } TEST_F(array_refcount_test, do_not_process_vector_indexing) { /* Vectors and matrices can also be indexed in much the same manner as * arrays. The visitor should not try to track per-element accesses to * these types. */ ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::float_type, "a", ir_var_auto); ir_variable *var_b = new(mem_ctx) ir_variable(glsl_type::int_type, "b", ir_var_auto); ir_variable *var_c = new(mem_ctx) ir_variable(glsl_type::vec4_type, "c", ir_var_auto); body->emit(assign(var_a, deref_array(var_c, var_b))); ir_array_refcount_visitor v; visit_list_elements(&v, &instructions); ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a); ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b); ir_array_refcount_entry *entry_c = v.get_variable_entry(var_c); EXPECT_TRUE(entry_a->is_referenced); EXPECT_TRUE(entry_b->is_referenced); EXPECT_TRUE(entry_c->is_referenced); /* As validated by previous tests, for non-array types, num_bits is 1. */ ASSERT_EQ(1, get_num_bits(*entry_c)); EXPECT_FALSE(entry_c->is_linearized_index_referenced(0)); } TEST_F(array_refcount_test, do_not_process_matrix_indexing) { /* Vectors and matrices can also be indexed in much the same manner as * arrays. The visitor should not try to track per-element accesses to * these types. */ ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::vec4_type, "a", ir_var_auto); ir_variable *var_b = new(mem_ctx) ir_variable(glsl_type::int_type, "b", ir_var_auto); ir_variable *var_c = new(mem_ctx) ir_variable(glsl_type::mat4_type, "c", ir_var_auto); body->emit(assign(var_a, deref_array(var_c, var_b))); ir_array_refcount_visitor v; visit_list_elements(&v, &instructions); ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a); ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b); ir_array_refcount_entry *entry_c = v.get_variable_entry(var_c); EXPECT_TRUE(entry_a->is_referenced); EXPECT_TRUE(entry_b->is_referenced); EXPECT_TRUE(entry_c->is_referenced); /* As validated by previous tests, for non-array types, num_bits is 1. */ ASSERT_EQ(1, get_num_bits(*entry_c)); EXPECT_FALSE(entry_c->is_linearized_index_referenced(0)); } TEST_F(array_refcount_test, do_not_process_array_inside_structure) { /* Structures can contain arrays. The visitor should not try to track * per-element accesses to arrays contained inside structures. */ const glsl_struct_field fields[] = { glsl_struct_field(array_3_of_int, "i"), }; const glsl_type *const record_of_array_3_of_int = glsl_type::get_record_instance(fields, ARRAY_SIZE(fields), "S"); ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::int_type, "a", ir_var_auto); ir_variable *var_b = new(mem_ctx) ir_variable(record_of_array_3_of_int, "b", ir_var_auto); /* a = b.i[2] */ body->emit(assign(var_a, deref_array( deref_struct(var_b, "i"), body->constant(int(2))))); ir_array_refcount_visitor v; visit_list_elements(&v, &instructions); ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a); ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b); EXPECT_TRUE(entry_a->is_referenced); EXPECT_TRUE(entry_b->is_referenced); ASSERT_EQ(1, get_num_bits(*entry_b)); EXPECT_FALSE(entry_b->is_linearized_index_referenced(0)); validate_variables_in_hash_table(v.ht, 2, var_a, var_b); } TEST_F(array_refcount_test, visit_simple_indexing) { ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::vec4_type, "a", ir_var_auto); ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "b", ir_var_auto); /* a = b[2][1][0] */ body->emit(assign(var_a, deref_array( deref_array( deref_array(var_b, body->constant(int(2))), body->constant(int(1))), body->constant(int(0))))); ir_array_refcount_visitor v; visit_list_elements(&v, &instructions); const unsigned accessed_element = 0 + (1 * 5) + (2 * 4 * 5); ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b); const unsigned total_elements = var_b->type->arrays_of_arrays_size(); for (unsigned i = 0; i < total_elements; i++) EXPECT_EQ(i == accessed_element, entry_b->is_linearized_index_referenced(i)) << "i = " << i; validate_variables_in_hash_table(v.ht, 2, var_a, var_b); } TEST_F(array_refcount_test, visit_whole_second_array_indexing) { ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::vec4_type, "a", ir_var_auto); ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "b", ir_var_auto); ir_variable *var_i = new(mem_ctx) ir_variable(glsl_type::int_type, "i", ir_var_auto); /* a = b[2][i][1] */ body->emit(assign(var_a, deref_array( deref_array( deref_array(var_b, body->constant(int(2))), var_i), body->constant(int(1))))); ir_array_refcount_visitor v; visit_list_elements(&v, &instructions); ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b); for (unsigned i = 0; i < 3; i++) { for (unsigned j = 0; j < 4; j++) { for (unsigned k = 0; k < 5; k++) { const bool accessed = (i == 2) && (k == 1); const unsigned linearized_index = k + (j * 5) + (i * 4 * 5); EXPECT_EQ(accessed, entry_b->is_linearized_index_referenced(linearized_index)) << "i = " << i; } } } validate_variables_in_hash_table(v.ht, 3, var_a, var_b, var_i); } TEST_F(array_refcount_test, visit_array_indexing_an_array) { ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::vec4_type, "a", ir_var_auto); ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4, "b", ir_var_auto); ir_variable *var_c = new(mem_ctx) ir_variable(array_3_of_int, "c", ir_var_auto); ir_variable *var_i = new(mem_ctx) ir_variable(glsl_type::int_type, "i", ir_var_auto); /* a = b[2][3][c[i]] */ body->emit(assign(var_a, deref_array( deref_array( deref_array(var_b, body->constant(int(2))), body->constant(int(3))), deref_array(var_c, var_i)))); ir_array_refcount_visitor v; visit_list_elements(&v, &instructions); ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b); for (unsigned i = 0; i < 3; i++) { for (unsigned j = 0; j < 4; j++) { for (unsigned k = 0; k < 5; k++) { const bool accessed = (i == 2) && (j == 3); const unsigned linearized_index = k + (j * 5) + (i * 4 * 5); EXPECT_EQ(accessed, entry_b->is_linearized_index_referenced(linearized_index)) << "array b[" << i << "][" << j << "][" << k << "], " << "linear index = " << linearized_index; } } } ir_array_refcount_entry *const entry_c = v.get_variable_entry(var_c); for (int i = 0; i < var_c->type->array_size(); i++) { EXPECT_EQ(true, entry_c->is_linearized_index_referenced(i)) << "array c, i = " << i; } validate_variables_in_hash_table(v.ht, 4, var_a, var_b, var_c, var_i); } TEST_F(array_refcount_test, visit_array_indexing_with_itself) { const glsl_type *const array_2_of_array_3_of_int = glsl_type::get_array_instance(array_3_of_int, 2); const glsl_type *const array_2_of_array_2_of_array_3_of_int = glsl_type::get_array_instance(array_2_of_array_3_of_int, 2); ir_variable *var_a = new(mem_ctx) ir_variable(glsl_type::int_type, "a", ir_var_auto); ir_variable *var_b = new(mem_ctx) ir_variable(array_2_of_array_2_of_array_3_of_int, "b", ir_var_auto); /* Given GLSL code: * * int b[2][2][3]; * a = b[ b[0][0][0] ][ b[ b[0][1][0] ][ b[1][0][0] ][1] ][2] * * b[0][0][0], b[0][1][0], and b[1][0][0] are trivially accessed. * * b[*][*][1] and b[*][*][2] are accessed. * * Only b[1][1][0] is not accessed. */ operand b000 = deref_array( deref_array( deref_array(var_b, body->constant(int(0))), body->constant(int(0))), body->constant(int(0))); operand b010 = deref_array( deref_array( deref_array(var_b, body->constant(int(0))), body->constant(int(1))), body->constant(int(0))); operand b100 = deref_array( deref_array( deref_array(var_b, body->constant(int(1))), body->constant(int(0))), body->constant(int(0))); operand b_b010_b100_1 = deref_array( deref_array( deref_array(var_b, b010), b100), body->constant(int(1))); body->emit(assign(var_a, deref_array( deref_array( deref_array(var_b, b000), b_b010_b100_1), body->constant(int(2))))); ir_array_refcount_visitor v; visit_list_elements(&v, &instructions); ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b); for (unsigned i = 0; i < 2; i++) { for (unsigned j = 0; j < 2; j++) { for (unsigned k = 0; k < 3; k++) { const bool accessed = !(i == 1 && j == 1 && k == 0); const unsigned linearized_index = k + (j * 3) + (i * 2 * 3); EXPECT_EQ(accessed, entry_b->is_linearized_index_referenced(linearized_index)) << "array b[" << i << "][" << j << "][" << k << "], " << "linear index = " << linearized_index; } } } validate_variables_in_hash_table(v.ht, 2, var_a, var_b); }