//===- yaml2coff - Convert YAML to a COFF object file ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief The COFF component of yaml2obj. /// //===----------------------------------------------------------------------===// #include "yaml2obj.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Object/COFF.h" #include "llvm/ObjectYAML/ObjectYAML.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include <vector> using namespace llvm; /// This parses a yaml stream that represents a COFF object file. /// See docs/yaml2obj for the yaml scheema. struct COFFParser { COFFParser(COFFYAML::Object &Obj) : Obj(Obj), SectionTableStart(0), SectionTableSize(0) { // A COFF string table always starts with a 4 byte size field. Offsets into // it include this size, so allocate it now. StringTable.append(4, char(0)); } bool useBigObj() const { return static_cast<int32_t>(Obj.Sections.size()) > COFF::MaxNumberOfSections16; } bool isPE() const { return Obj.OptionalHeader.hasValue(); } bool is64Bit() const { return Obj.Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64; } uint32_t getFileAlignment() const { return Obj.OptionalHeader->Header.FileAlignment; } unsigned getHeaderSize() const { return useBigObj() ? COFF::Header32Size : COFF::Header16Size; } unsigned getSymbolSize() const { return useBigObj() ? COFF::Symbol32Size : COFF::Symbol16Size; } bool parseSections() { for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(), e = Obj.Sections.end(); i != e; ++i) { COFFYAML::Section &Sec = *i; // If the name is less than 8 bytes, store it in place, otherwise // store it in the string table. StringRef Name = Sec.Name; if (Name.size() <= COFF::NameSize) { std::copy(Name.begin(), Name.end(), Sec.Header.Name); } else { // Add string to the string table and format the index for output. unsigned Index = getStringIndex(Name); std::string str = utostr(Index); if (str.size() > 7) { errs() << "String table got too large\n"; return false; } Sec.Header.Name[0] = '/'; std::copy(str.begin(), str.end(), Sec.Header.Name + 1); } if (Sec.Alignment) { if (Sec.Alignment > 8192) { errs() << "Section alignment is too large\n"; return false; } if (!isPowerOf2_32(Sec.Alignment)) { errs() << "Section alignment is not a power of 2\n"; return false; } Sec.Header.Characteristics |= (Log2_32(Sec.Alignment) + 1) << 20; } } return true; } bool parseSymbols() { for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(), e = Obj.Symbols.end(); i != e; ++i) { COFFYAML::Symbol &Sym = *i; // If the name is less than 8 bytes, store it in place, otherwise // store it in the string table. StringRef Name = Sym.Name; if (Name.size() <= COFF::NameSize) { std::copy(Name.begin(), Name.end(), Sym.Header.Name); } else { // Add string to the string table and format the index for output. unsigned Index = getStringIndex(Name); *reinterpret_cast<support::aligned_ulittle32_t*>( Sym.Header.Name + 4) = Index; } Sym.Header.Type = Sym.SimpleType; Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT; } return true; } bool parse() { if (!parseSections()) return false; if (!parseSymbols()) return false; return true; } unsigned getStringIndex(StringRef Str) { StringMap<unsigned>::iterator i = StringTableMap.find(Str); if (i == StringTableMap.end()) { unsigned Index = StringTable.size(); StringTable.append(Str.begin(), Str.end()); StringTable.push_back(0); StringTableMap[Str] = Index; return Index; } return i->second; } COFFYAML::Object &Obj; StringMap<unsigned> StringTableMap; std::string StringTable; uint32_t SectionTableStart; uint32_t SectionTableSize; }; // Take a CP and assign addresses and sizes to everything. Returns false if the // layout is not valid to do. static bool layoutOptionalHeader(COFFParser &CP) { if (!CP.isPE()) return true; unsigned PEHeaderSize = CP.is64Bit() ? sizeof(object::pe32plus_header) : sizeof(object::pe32_header); CP.Obj.Header.SizeOfOptionalHeader = PEHeaderSize + sizeof(object::data_directory) * (COFF::NUM_DATA_DIRECTORIES + 1); return true; } namespace { enum { DOSStubSize = 128 }; } // Take a CP and assign addresses and sizes to everything. Returns false if the // layout is not valid to do. static bool layoutCOFF(COFFParser &CP) { // The section table starts immediately after the header, including the // optional header. CP.SectionTableStart = CP.getHeaderSize() + CP.Obj.Header.SizeOfOptionalHeader; if (CP.isPE()) CP.SectionTableStart += DOSStubSize + sizeof(COFF::PEMagic); CP.SectionTableSize = COFF::SectionSize * CP.Obj.Sections.size(); uint32_t CurrentSectionDataOffset = CP.SectionTableStart + CP.SectionTableSize; // Assign each section data address consecutively. for (COFFYAML::Section &S : CP.Obj.Sections) { if (S.SectionData.binary_size() > 0) { CurrentSectionDataOffset = alignTo(CurrentSectionDataOffset, CP.isPE() ? CP.getFileAlignment() : 4); S.Header.SizeOfRawData = S.SectionData.binary_size(); if (CP.isPE()) S.Header.SizeOfRawData = alignTo(S.Header.SizeOfRawData, CP.getFileAlignment()); S.Header.PointerToRawData = CurrentSectionDataOffset; CurrentSectionDataOffset += S.Header.SizeOfRawData; if (!S.Relocations.empty()) { S.Header.PointerToRelocations = CurrentSectionDataOffset; S.Header.NumberOfRelocations = S.Relocations.size(); CurrentSectionDataOffset += S.Header.NumberOfRelocations * COFF::RelocationSize; } } else { S.Header.SizeOfRawData = 0; S.Header.PointerToRawData = 0; } } uint32_t SymbolTableStart = CurrentSectionDataOffset; // Calculate number of symbols. uint32_t NumberOfSymbols = 0; for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(), e = CP.Obj.Symbols.end(); i != e; ++i) { uint32_t NumberOfAuxSymbols = 0; if (i->FunctionDefinition) NumberOfAuxSymbols += 1; if (i->bfAndefSymbol) NumberOfAuxSymbols += 1; if (i->WeakExternal) NumberOfAuxSymbols += 1; if (!i->File.empty()) NumberOfAuxSymbols += (i->File.size() + CP.getSymbolSize() - 1) / CP.getSymbolSize(); if (i->SectionDefinition) NumberOfAuxSymbols += 1; if (i->CLRToken) NumberOfAuxSymbols += 1; i->Header.NumberOfAuxSymbols = NumberOfAuxSymbols; NumberOfSymbols += 1 + NumberOfAuxSymbols; } // Store all the allocated start addresses in the header. CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size(); CP.Obj.Header.NumberOfSymbols = NumberOfSymbols; if (NumberOfSymbols > 0 || CP.StringTable.size() > 4) CP.Obj.Header.PointerToSymbolTable = SymbolTableStart; else CP.Obj.Header.PointerToSymbolTable = 0; *reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0]) = CP.StringTable.size(); return true; } template <typename value_type> struct binary_le_impl { value_type Value; binary_le_impl(value_type V) : Value(V) {} }; template <typename value_type> raw_ostream &operator <<( raw_ostream &OS , const binary_le_impl<value_type> &BLE) { char Buffer[sizeof(BLE.Value)]; support::endian::write<value_type, support::little, support::unaligned>( Buffer, BLE.Value); OS.write(Buffer, sizeof(BLE.Value)); return OS; } template <typename value_type> binary_le_impl<value_type> binary_le(value_type V) { return binary_le_impl<value_type>(V); } template <size_t NumBytes> struct zeros_impl {}; template <size_t NumBytes> raw_ostream &operator<<(raw_ostream &OS, const zeros_impl<NumBytes> &) { char Buffer[NumBytes]; memset(Buffer, 0, sizeof(Buffer)); OS.write(Buffer, sizeof(Buffer)); return OS; } template <typename T> zeros_impl<sizeof(T)> zeros(const T &) { return zeros_impl<sizeof(T)>(); } struct num_zeros_impl { size_t N; num_zeros_impl(size_t N) : N(N) {} }; raw_ostream &operator<<(raw_ostream &OS, const num_zeros_impl &NZI) { for (size_t I = 0; I != NZI.N; ++I) OS.write(0); return OS; } static num_zeros_impl num_zeros(size_t N) { num_zeros_impl NZI(N); return NZI; } template <typename T> static uint32_t initializeOptionalHeader(COFFParser &CP, uint16_t Magic, T Header) { memset(Header, 0, sizeof(*Header)); Header->Magic = Magic; Header->SectionAlignment = CP.Obj.OptionalHeader->Header.SectionAlignment; Header->FileAlignment = CP.Obj.OptionalHeader->Header.FileAlignment; uint32_t SizeOfCode = 0, SizeOfInitializedData = 0, SizeOfUninitializedData = 0; uint32_t SizeOfHeaders = alignTo(CP.SectionTableStart + CP.SectionTableSize, Header->FileAlignment); uint32_t SizeOfImage = alignTo(SizeOfHeaders, Header->SectionAlignment); uint32_t BaseOfData = 0; for (const COFFYAML::Section &S : CP.Obj.Sections) { if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_CODE) SizeOfCode += S.Header.SizeOfRawData; if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA) SizeOfInitializedData += S.Header.SizeOfRawData; if (S.Header.Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) SizeOfUninitializedData += S.Header.SizeOfRawData; if (S.Name.equals(".text")) Header->BaseOfCode = S.Header.VirtualAddress; // RVA else if (S.Name.equals(".data")) BaseOfData = S.Header.VirtualAddress; // RVA if (S.Header.VirtualAddress) SizeOfImage += alignTo(S.Header.VirtualSize, Header->SectionAlignment); } Header->SizeOfCode = SizeOfCode; Header->SizeOfInitializedData = SizeOfInitializedData; Header->SizeOfUninitializedData = SizeOfUninitializedData; Header->AddressOfEntryPoint = CP.Obj.OptionalHeader->Header.AddressOfEntryPoint; // RVA Header->ImageBase = CP.Obj.OptionalHeader->Header.ImageBase; Header->MajorOperatingSystemVersion = CP.Obj.OptionalHeader->Header.MajorOperatingSystemVersion; Header->MinorOperatingSystemVersion = CP.Obj.OptionalHeader->Header.MinorOperatingSystemVersion; Header->MajorImageVersion = CP.Obj.OptionalHeader->Header.MajorImageVersion; Header->MinorImageVersion = CP.Obj.OptionalHeader->Header.MinorImageVersion; Header->MajorSubsystemVersion = CP.Obj.OptionalHeader->Header.MajorSubsystemVersion; Header->MinorSubsystemVersion = CP.Obj.OptionalHeader->Header.MinorSubsystemVersion; Header->SizeOfImage = SizeOfImage; Header->SizeOfHeaders = SizeOfHeaders; Header->Subsystem = CP.Obj.OptionalHeader->Header.Subsystem; Header->DLLCharacteristics = CP.Obj.OptionalHeader->Header.DLLCharacteristics; Header->SizeOfStackReserve = CP.Obj.OptionalHeader->Header.SizeOfStackReserve; Header->SizeOfStackCommit = CP.Obj.OptionalHeader->Header.SizeOfStackCommit; Header->SizeOfHeapReserve = CP.Obj.OptionalHeader->Header.SizeOfHeapReserve; Header->SizeOfHeapCommit = CP.Obj.OptionalHeader->Header.SizeOfHeapCommit; Header->NumberOfRvaAndSize = COFF::NUM_DATA_DIRECTORIES + 1; return BaseOfData; } static bool writeCOFF(COFFParser &CP, raw_ostream &OS) { if (CP.isPE()) { // PE files start with a DOS stub. object::dos_header DH; memset(&DH, 0, sizeof(DH)); // DOS EXEs start with "MZ" magic. DH.Magic[0] = 'M'; DH.Magic[1] = 'Z'; // Initializing the AddressOfRelocationTable is strictly optional but // mollifies certain tools which expect it to have a value greater than // 0x40. DH.AddressOfRelocationTable = sizeof(DH); // This is the address of the PE signature. DH.AddressOfNewExeHeader = DOSStubSize; // Write out our DOS stub. OS.write(reinterpret_cast<char *>(&DH), sizeof(DH)); // Write padding until we reach the position of where our PE signature // should live. OS << num_zeros(DOSStubSize - sizeof(DH)); // Write out the PE signature. OS.write(COFF::PEMagic, sizeof(COFF::PEMagic)); } if (CP.useBigObj()) { OS << binary_le(static_cast<uint16_t>(COFF::IMAGE_FILE_MACHINE_UNKNOWN)) << binary_le(static_cast<uint16_t>(0xffff)) << binary_le(static_cast<uint16_t>(COFF::BigObjHeader::MinBigObjectVersion)) << binary_le(CP.Obj.Header.Machine) << binary_le(CP.Obj.Header.TimeDateStamp); OS.write(COFF::BigObjMagic, sizeof(COFF::BigObjMagic)); OS << zeros(uint32_t(0)) << zeros(uint32_t(0)) << zeros(uint32_t(0)) << zeros(uint32_t(0)) << binary_le(CP.Obj.Header.NumberOfSections) << binary_le(CP.Obj.Header.PointerToSymbolTable) << binary_le(CP.Obj.Header.NumberOfSymbols); } else { OS << binary_le(CP.Obj.Header.Machine) << binary_le(static_cast<int16_t>(CP.Obj.Header.NumberOfSections)) << binary_le(CP.Obj.Header.TimeDateStamp) << binary_le(CP.Obj.Header.PointerToSymbolTable) << binary_le(CP.Obj.Header.NumberOfSymbols) << binary_le(CP.Obj.Header.SizeOfOptionalHeader) << binary_le(CP.Obj.Header.Characteristics); } if (CP.isPE()) { if (CP.is64Bit()) { object::pe32plus_header PEH; initializeOptionalHeader(CP, COFF::PE32Header::PE32_PLUS, &PEH); OS.write(reinterpret_cast<char *>(&PEH), sizeof(PEH)); } else { object::pe32_header PEH; uint32_t BaseOfData = initializeOptionalHeader(CP, COFF::PE32Header::PE32, &PEH); PEH.BaseOfData = BaseOfData; OS.write(reinterpret_cast<char *>(&PEH), sizeof(PEH)); } for (const Optional<COFF::DataDirectory> &DD : CP.Obj.OptionalHeader->DataDirectories) { if (!DD.hasValue()) { OS << zeros(uint32_t(0)); OS << zeros(uint32_t(0)); } else { OS << binary_le(DD->RelativeVirtualAddress); OS << binary_le(DD->Size); } } OS << zeros(uint32_t(0)); OS << zeros(uint32_t(0)); } assert(OS.tell() == CP.SectionTableStart); // Output section table. for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(), e = CP.Obj.Sections.end(); i != e; ++i) { OS.write(i->Header.Name, COFF::NameSize); OS << binary_le(i->Header.VirtualSize) << binary_le(i->Header.VirtualAddress) << binary_le(i->Header.SizeOfRawData) << binary_le(i->Header.PointerToRawData) << binary_le(i->Header.PointerToRelocations) << binary_le(i->Header.PointerToLineNumbers) << binary_le(i->Header.NumberOfRelocations) << binary_le(i->Header.NumberOfLineNumbers) << binary_le(i->Header.Characteristics); } assert(OS.tell() == CP.SectionTableStart + CP.SectionTableSize); unsigned CurSymbol = 0; StringMap<unsigned> SymbolTableIndexMap; for (std::vector<COFFYAML::Symbol>::iterator I = CP.Obj.Symbols.begin(), E = CP.Obj.Symbols.end(); I != E; ++I) { SymbolTableIndexMap[I->Name] = CurSymbol; CurSymbol += 1 + I->Header.NumberOfAuxSymbols; } // Output section data. for (const COFFYAML::Section &S : CP.Obj.Sections) { if (!S.Header.SizeOfRawData) continue; assert(S.Header.PointerToRawData >= OS.tell()); OS << num_zeros(S.Header.PointerToRawData - OS.tell()); S.SectionData.writeAsBinary(OS); assert(S.Header.SizeOfRawData >= S.SectionData.binary_size()); OS << num_zeros(S.Header.SizeOfRawData - S.SectionData.binary_size()); for (const COFFYAML::Relocation &R : S.Relocations) { uint32_t SymbolTableIndex = SymbolTableIndexMap[R.SymbolName]; OS << binary_le(R.VirtualAddress) << binary_le(SymbolTableIndex) << binary_le(R.Type); } } // Output symbol table. for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(), e = CP.Obj.Symbols.end(); i != e; ++i) { OS.write(i->Header.Name, COFF::NameSize); OS << binary_le(i->Header.Value); if (CP.useBigObj()) OS << binary_le(i->Header.SectionNumber); else OS << binary_le(static_cast<int16_t>(i->Header.SectionNumber)); OS << binary_le(i->Header.Type) << binary_le(i->Header.StorageClass) << binary_le(i->Header.NumberOfAuxSymbols); if (i->FunctionDefinition) OS << binary_le(i->FunctionDefinition->TagIndex) << binary_le(i->FunctionDefinition->TotalSize) << binary_le(i->FunctionDefinition->PointerToLinenumber) << binary_le(i->FunctionDefinition->PointerToNextFunction) << zeros(i->FunctionDefinition->unused) << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size); if (i->bfAndefSymbol) OS << zeros(i->bfAndefSymbol->unused1) << binary_le(i->bfAndefSymbol->Linenumber) << zeros(i->bfAndefSymbol->unused2) << binary_le(i->bfAndefSymbol->PointerToNextFunction) << zeros(i->bfAndefSymbol->unused3) << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size); if (i->WeakExternal) OS << binary_le(i->WeakExternal->TagIndex) << binary_le(i->WeakExternal->Characteristics) << zeros(i->WeakExternal->unused) << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size); if (!i->File.empty()) { unsigned SymbolSize = CP.getSymbolSize(); uint32_t NumberOfAuxRecords = (i->File.size() + SymbolSize - 1) / SymbolSize; uint32_t NumberOfAuxBytes = NumberOfAuxRecords * SymbolSize; uint32_t NumZeros = NumberOfAuxBytes - i->File.size(); OS.write(i->File.data(), i->File.size()); OS << num_zeros(NumZeros); } if (i->SectionDefinition) OS << binary_le(i->SectionDefinition->Length) << binary_le(i->SectionDefinition->NumberOfRelocations) << binary_le(i->SectionDefinition->NumberOfLinenumbers) << binary_le(i->SectionDefinition->CheckSum) << binary_le(static_cast<int16_t>(i->SectionDefinition->Number)) << binary_le(i->SectionDefinition->Selection) << zeros(i->SectionDefinition->unused) << binary_le(static_cast<int16_t>(i->SectionDefinition->Number >> 16)) << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size); if (i->CLRToken) OS << binary_le(i->CLRToken->AuxType) << zeros(i->CLRToken->unused1) << binary_le(i->CLRToken->SymbolTableIndex) << zeros(i->CLRToken->unused2) << num_zeros(CP.getSymbolSize() - COFF::Symbol16Size); } // Output string table. if (CP.Obj.Header.PointerToSymbolTable) OS.write(&CP.StringTable[0], CP.StringTable.size()); return true; } int yaml2coff(llvm::COFFYAML::Object &Doc, raw_ostream &Out) { COFFParser CP(Doc); if (!CP.parse()) { errs() << "yaml2obj: Failed to parse YAML file!\n"; return 1; } if (!layoutOptionalHeader(CP)) { errs() << "yaml2obj: Failed to layout optional header for COFF file!\n"; return 1; } if (!layoutCOFF(CP)) { errs() << "yaml2obj: Failed to layout COFF file!\n"; return 1; } if (!writeCOFF(CP, Out)) { errs() << "yaml2obj: Failed to write COFF file!\n"; return 1; } return 0; }