//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This program is a utility that works like binutils "objdump", that is, it // dumps out a plethora of information about an object file depending on the // flags. // // The flags and output of this program should be near identical to those of // binutils objdump. // //===----------------------------------------------------------------------===// #include "llvm-objdump.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/FaultMaps.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Object/Archive.h" #include "llvm/Object/COFF.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/MachO.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Format.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/Host.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cctype> #include <cstring> #include <system_error> #include <utility> using namespace llvm; using namespace object; static cl::list<std::string> InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore); cl::opt<bool> llvm::Disassemble("disassemble", cl::desc("Display assembler mnemonics for the machine instructions")); static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"), cl::aliasopt(Disassemble)); cl::opt<bool> llvm::DisassembleAll("disassemble-all", cl::desc("Display assembler mnemonics for the machine instructions")); static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"), cl::aliasopt(DisassembleAll)); cl::opt<bool> llvm::Relocations("r", cl::desc("Display the relocation entries in the file")); cl::opt<bool> llvm::SectionContents("s", cl::desc("Display the content of each section")); cl::opt<bool> llvm::SymbolTable("t", cl::desc("Display the symbol table")); cl::opt<bool> llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols")); cl::opt<bool> llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info")); cl::opt<bool> llvm::Bind("bind", cl::desc("Display mach-o binding info")); cl::opt<bool> llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info")); cl::opt<bool> llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info")); cl::opt<bool> llvm::RawClangAST("raw-clang-ast", cl::desc("Dump the raw binary contents of the clang AST section")); static cl::opt<bool> MachOOpt("macho", cl::desc("Use MachO specific object file parser")); static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt)); cl::opt<std::string> llvm::TripleName("triple", cl::desc("Target triple to disassemble for, " "see -version for available targets")); cl::opt<std::string> llvm::MCPU("mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"), cl::value_desc("cpu-name"), cl::init("")); cl::opt<std::string> llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, " "see -version for available targets")); cl::opt<bool> llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the " "headers for each section.")); static cl::alias SectionHeadersShort("headers", cl::desc("Alias for --section-headers"), cl::aliasopt(SectionHeaders)); static cl::alias SectionHeadersShorter("h", cl::desc("Alias for --section-headers"), cl::aliasopt(SectionHeaders)); cl::list<std::string> llvm::FilterSections("section", cl::desc("Operate on the specified sections only. " "With -macho dump segment,section")); cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"), cl::aliasopt(llvm::FilterSections)); cl::list<std::string> llvm::MAttrs("mattr", cl::CommaSeparated, cl::desc("Target specific attributes"), cl::value_desc("a1,+a2,-a3,...")); cl::opt<bool> llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling " "instructions, do not print " "the instruction bytes.")); cl::opt<bool> llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information")); static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), cl::aliasopt(UnwindInfo)); cl::opt<bool> llvm::PrivateHeaders("private-headers", cl::desc("Display format specific file headers")); cl::opt<bool> llvm::FirstPrivateHeader("private-header", cl::desc("Display only the first format specific file " "header")); static cl::alias PrivateHeadersShort("p", cl::desc("Alias for --private-headers"), cl::aliasopt(PrivateHeaders)); cl::opt<bool> llvm::PrintImmHex("print-imm-hex", cl::desc("Use hex format for immediate values")); cl::opt<bool> PrintFaultMaps("fault-map-section", cl::desc("Display contents of faultmap section")); cl::opt<DIDumpType> llvm::DwarfDumpType( "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), cl::values(clEnumValN(DIDT_Frames, "frames", ".debug_frame"), clEnumValEnd)); static StringRef ToolName; namespace { typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate; class SectionFilterIterator { public: SectionFilterIterator(FilterPredicate P, llvm::object::section_iterator const &I, llvm::object::section_iterator const &E) : Predicate(std::move(P)), Iterator(I), End(E) { ScanPredicate(); } const llvm::object::SectionRef &operator*() const { return *Iterator; } SectionFilterIterator &operator++() { ++Iterator; ScanPredicate(); return *this; } bool operator!=(SectionFilterIterator const &Other) const { return Iterator != Other.Iterator; } private: void ScanPredicate() { while (Iterator != End && !Predicate(*Iterator)) { ++Iterator; } } FilterPredicate Predicate; llvm::object::section_iterator Iterator; llvm::object::section_iterator End; }; class SectionFilter { public: SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O) : Predicate(std::move(P)), Object(O) {} SectionFilterIterator begin() { return SectionFilterIterator(Predicate, Object.section_begin(), Object.section_end()); } SectionFilterIterator end() { return SectionFilterIterator(Predicate, Object.section_end(), Object.section_end()); } private: FilterPredicate Predicate; llvm::object::ObjectFile const &Object; }; SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) { return SectionFilter([](llvm::object::SectionRef const &S) { if(FilterSections.empty()) return true; llvm::StringRef String; std::error_code error = S.getName(String); if (error) return false; return std::find(FilterSections.begin(), FilterSections.end(), String) != FilterSections.end(); }, O); } } void llvm::error(std::error_code EC) { if (!EC) return; errs() << ToolName << ": error reading file: " << EC.message() << ".\n"; errs().flush(); exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) { errs() << ToolName << ": " << Message << ".\n"; errs().flush(); exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, std::error_code EC) { assert(EC); errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n"; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, llvm::Error E) { assert(E); std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(std::move(E), OS, ""); OS.flush(); errs() << ToolName << ": '" << File << "': " << Buf; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, StringRef FileName, llvm::Error E, StringRef ArchitectureName) { assert(E); errs() << ToolName << ": "; if (ArchiveName != "") errs() << ArchiveName << "(" << FileName << ")"; else errs() << FileName; if (!ArchitectureName.empty()) errs() << " (for architecture " << ArchitectureName << ")"; std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(std::move(E), OS, ""); OS.flush(); errs() << " " << Buf; exit(1); } LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, const object::Archive::Child &C, llvm::Error E, StringRef ArchitectureName) { ErrorOr<StringRef> NameOrErr = C.getName(); // TODO: if we have a error getting the name then it would be nice to print // the index of which archive member this is and or its offset in the // archive instead of "???" as the name. if (NameOrErr.getError()) llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName); else llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E), ArchitectureName); } static const Target *getTarget(const ObjectFile *Obj = nullptr) { // Figure out the target triple. llvm::Triple TheTriple("unknown-unknown-unknown"); if (TripleName.empty()) { if (Obj) { TheTriple.setArch(Triple::ArchType(Obj->getArch())); // TheTriple defaults to ELF, and COFF doesn't have an environment: // the best we can do here is indicate that it is mach-o. if (Obj->isMachO()) TheTriple.setObjectFormat(Triple::MachO); if (Obj->isCOFF()) { const auto COFFObj = dyn_cast<COFFObjectFile>(Obj); if (COFFObj->getArch() == Triple::thumb) TheTriple.setTriple("thumbv7-windows"); } } } else TheTriple.setTriple(Triple::normalize(TripleName)); // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, Error); if (!TheTarget) report_fatal_error("can't find target: " + Error); // Update the triple name and return the found target. TripleName = TheTriple.getTriple(); return TheTarget; } bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) { return a.getOffset() < b.getOffset(); } namespace { class PrettyPrinter { public: virtual ~PrettyPrinter(){} virtual void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI) { OS << format("%8" PRIx64 ":", Address); if (!NoShowRawInsn) { OS << "\t"; dumpBytes(Bytes, OS); } if (MI) IP.printInst(MI, OS, "", STI); else OS << " <unknown>"; } }; PrettyPrinter PrettyPrinterInst; class HexagonPrettyPrinter : public PrettyPrinter { public: void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, raw_ostream &OS) { uint32_t opcode = (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; OS << format("%8" PRIx64 ":", Address); if (!NoShowRawInsn) { OS << "\t"; dumpBytes(Bytes.slice(0, 4), OS); OS << format("%08" PRIx32, opcode); } } void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI) override { if (!MI) { printLead(Bytes, Address, OS); OS << " <unknown>"; return; } std::string Buffer; { raw_string_ostream TempStream(Buffer); IP.printInst(MI, TempStream, "", STI); } StringRef Contents(Buffer); // Split off bundle attributes auto PacketBundle = Contents.rsplit('\n'); // Split off first instruction from the rest auto HeadTail = PacketBundle.first.split('\n'); auto Preamble = " { "; auto Separator = ""; while(!HeadTail.first.empty()) { OS << Separator; Separator = "\n"; printLead(Bytes, Address, OS); OS << Preamble; Preamble = " "; StringRef Inst; auto Duplex = HeadTail.first.split('\v'); if(!Duplex.second.empty()){ OS << Duplex.first; OS << "; "; Inst = Duplex.second; } else Inst = HeadTail.first; OS << Inst; Bytes = Bytes.slice(4); Address += 4; HeadTail = HeadTail.second.split('\n'); } OS << " } " << PacketBundle.second; } }; HexagonPrettyPrinter HexagonPrettyPrinterInst; class AMDGCNPrettyPrinter : public PrettyPrinter { public: void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, uint64_t Address, raw_ostream &OS, StringRef Annot, MCSubtargetInfo const &STI) override { if (!MI) { OS << " <unknown>"; return; } SmallString<40> InstStr; raw_svector_ostream IS(InstStr); IP.printInst(MI, IS, "", STI); OS << left_justify(IS.str(), 60) << format("// %012" PRIX64 ": ", Address); typedef support::ulittle32_t U32; for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()), Bytes.size() / sizeof(U32))) // D should be explicitly casted to uint32_t here as it is passed // by format to snprintf as vararg. OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D)); if (!Annot.empty()) OS << "// " << Annot; } }; AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { switch(Triple.getArch()) { default: return PrettyPrinterInst; case Triple::hexagon: return HexagonPrettyPrinterInst; case Triple::amdgcn: return AMDGCNPrettyPrinterInst; } } } template <class ELFT> static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj, const RelocationRef &RelRef, SmallVectorImpl<char> &Result) { DataRefImpl Rel = RelRef.getRawDataRefImpl(); typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym; typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr; typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela; const ELFFile<ELFT> &EF = *Obj->getELFFile(); ErrorOr<const Elf_Shdr *> SecOrErr = EF.getSection(Rel.d.a); if (std::error_code EC = SecOrErr.getError()) return EC; const Elf_Shdr *Sec = *SecOrErr; ErrorOr<const Elf_Shdr *> SymTabOrErr = EF.getSection(Sec->sh_link); if (std::error_code EC = SymTabOrErr.getError()) return EC; const Elf_Shdr *SymTab = *SymTabOrErr; assert(SymTab->sh_type == ELF::SHT_SYMTAB || SymTab->sh_type == ELF::SHT_DYNSYM); ErrorOr<const Elf_Shdr *> StrTabSec = EF.getSection(SymTab->sh_link); if (std::error_code EC = StrTabSec.getError()) return EC; ErrorOr<StringRef> StrTabOrErr = EF.getStringTable(*StrTabSec); if (std::error_code EC = StrTabOrErr.getError()) return EC; StringRef StrTab = *StrTabOrErr; uint8_t type = RelRef.getType(); StringRef res; int64_t addend = 0; switch (Sec->sh_type) { default: return object_error::parse_failed; case ELF::SHT_REL: { // TODO: Read implicit addend from section data. break; } case ELF::SHT_RELA: { const Elf_Rela *ERela = Obj->getRela(Rel); addend = ERela->r_addend; break; } } symbol_iterator SI = RelRef.getSymbol(); const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl()); StringRef Target; if (symb->getType() == ELF::STT_SECTION) { Expected<section_iterator> SymSI = SI->getSection(); if (!SymSI) return errorToErrorCode(SymSI.takeError()); const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl()); ErrorOr<StringRef> SecName = EF.getSectionName(SymSec); if (std::error_code EC = SecName.getError()) return EC; Target = *SecName; } else { Expected<StringRef> SymName = symb->getName(StrTab); if (!SymName) return errorToErrorCode(SymName.takeError()); Target = *SymName; } switch (EF.getHeader()->e_machine) { case ELF::EM_X86_64: switch (type) { case ELF::R_X86_64_PC8: case ELF::R_X86_64_PC16: case ELF::R_X86_64_PC32: { std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Target << (addend < 0 ? "" : "+") << addend << "-P"; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); } break; case ELF::R_X86_64_8: case ELF::R_X86_64_16: case ELF::R_X86_64_32: case ELF::R_X86_64_32S: case ELF::R_X86_64_64: { std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Target << (addend < 0 ? "" : "+") << addend; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); } break; default: res = "Unknown"; } break; case ELF::EM_LANAI: case ELF::EM_AARCH64: { std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Target; if (addend != 0) fmt << (addend < 0 ? "" : "+") << addend; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); break; } case ELF::EM_386: case ELF::EM_IAMCU: case ELF::EM_ARM: case ELF::EM_HEXAGON: case ELF::EM_MIPS: res = Target; break; case ELF::EM_WEBASSEMBLY: switch (type) { case ELF::R_WEBASSEMBLY_DATA: { std::string fmtbuf; raw_string_ostream fmt(fmtbuf); fmt << Target << (addend < 0 ? "" : "+") << addend; fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); break; } case ELF::R_WEBASSEMBLY_FUNCTION: res = Target; break; default: res = "Unknown"; } break; default: res = "Unknown"; } if (Result.empty()) Result.append(res.begin(), res.end()); return std::error_code(); } static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj, const RelocationRef &Rel, SmallVectorImpl<char> &Result) { if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) return getRelocationValueString(ELF32LE, Rel, Result); if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) return getRelocationValueString(ELF64LE, Rel, Result); if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) return getRelocationValueString(ELF32BE, Rel, Result); auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); return getRelocationValueString(ELF64BE, Rel, Result); } static std::error_code getRelocationValueString(const COFFObjectFile *Obj, const RelocationRef &Rel, SmallVectorImpl<char> &Result) { symbol_iterator SymI = Rel.getSymbol(); Expected<StringRef> SymNameOrErr = SymI->getName(); if (!SymNameOrErr) return errorToErrorCode(SymNameOrErr.takeError()); StringRef SymName = *SymNameOrErr; Result.append(SymName.begin(), SymName.end()); return std::error_code(); } static void printRelocationTargetName(const MachOObjectFile *O, const MachO::any_relocation_info &RE, raw_string_ostream &fmt) { bool IsScattered = O->isRelocationScattered(RE); // Target of a scattered relocation is an address. In the interest of // generating pretty output, scan through the symbol table looking for a // symbol that aligns with that address. If we find one, print it. // Otherwise, we just print the hex address of the target. if (IsScattered) { uint32_t Val = O->getPlainRelocationSymbolNum(RE); for (const SymbolRef &Symbol : O->symbols()) { std::error_code ec; Expected<uint64_t> Addr = Symbol.getAddress(); if (!Addr) { std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(Addr.takeError(), OS, ""); OS.flush(); report_fatal_error(Buf); } if (*Addr != Val) continue; Expected<StringRef> Name = Symbol.getName(); if (!Name) { std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(Name.takeError(), OS, ""); OS.flush(); report_fatal_error(Buf); } fmt << *Name; return; } // If we couldn't find a symbol that this relocation refers to, try // to find a section beginning instead. for (const SectionRef &Section : ToolSectionFilter(*O)) { std::error_code ec; StringRef Name; uint64_t Addr = Section.getAddress(); if (Addr != Val) continue; if ((ec = Section.getName(Name))) report_fatal_error(ec.message()); fmt << Name; return; } fmt << format("0x%x", Val); return; } StringRef S; bool isExtern = O->getPlainRelocationExternal(RE); uint64_t Val = O->getPlainRelocationSymbolNum(RE); if (isExtern) { symbol_iterator SI = O->symbol_begin(); advance(SI, Val); Expected<StringRef> SOrErr = SI->getName(); error(errorToErrorCode(SOrErr.takeError())); S = *SOrErr; } else { section_iterator SI = O->section_begin(); // Adjust for the fact that sections are 1-indexed. advance(SI, Val - 1); SI->getName(S); } fmt << S; } static std::error_code getRelocationValueString(const MachOObjectFile *Obj, const RelocationRef &RelRef, SmallVectorImpl<char> &Result) { DataRefImpl Rel = RelRef.getRawDataRefImpl(); MachO::any_relocation_info RE = Obj->getRelocation(Rel); unsigned Arch = Obj->getArch(); std::string fmtbuf; raw_string_ostream fmt(fmtbuf); unsigned Type = Obj->getAnyRelocationType(RE); bool IsPCRel = Obj->getAnyRelocationPCRel(RE); // Determine any addends that should be displayed with the relocation. // These require decoding the relocation type, which is triple-specific. // X86_64 has entirely custom relocation types. if (Arch == Triple::x86_64) { bool isPCRel = Obj->getAnyRelocationPCRel(RE); switch (Type) { case MachO::X86_64_RELOC_GOT_LOAD: case MachO::X86_64_RELOC_GOT: { printRelocationTargetName(Obj, RE, fmt); fmt << "@GOT"; if (isPCRel) fmt << "PCREL"; break; } case MachO::X86_64_RELOC_SUBTRACTOR: { DataRefImpl RelNext = Rel; Obj->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type // X86_64_RELOC_UNSIGNED. // NOTE: Scattered relocations don't exist on x86_64. unsigned RType = Obj->getAnyRelocationType(RENext); if (RType != MachO::X86_64_RELOC_UNSIGNED) report_fatal_error("Expected X86_64_RELOC_UNSIGNED after " "X86_64_RELOC_SUBTRACTOR."); // The X86_64_RELOC_UNSIGNED contains the minuend symbol; // X86_64_RELOC_SUBTRACTOR contains the subtrahend. printRelocationTargetName(Obj, RENext, fmt); fmt << "-"; printRelocationTargetName(Obj, RE, fmt); break; } case MachO::X86_64_RELOC_TLV: printRelocationTargetName(Obj, RE, fmt); fmt << "@TLV"; if (isPCRel) fmt << "P"; break; case MachO::X86_64_RELOC_SIGNED_1: printRelocationTargetName(Obj, RE, fmt); fmt << "-1"; break; case MachO::X86_64_RELOC_SIGNED_2: printRelocationTargetName(Obj, RE, fmt); fmt << "-2"; break; case MachO::X86_64_RELOC_SIGNED_4: printRelocationTargetName(Obj, RE, fmt); fmt << "-4"; break; default: printRelocationTargetName(Obj, RE, fmt); break; } // X86 and ARM share some relocation types in common. } else if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) { // Generic relocation types... switch (Type) { case MachO::GENERIC_RELOC_PAIR: // prints no info return std::error_code(); case MachO::GENERIC_RELOC_SECTDIFF: { DataRefImpl RelNext = Rel; Obj->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); // X86 sect diff's must be followed by a relocation of type // GENERIC_RELOC_PAIR. unsigned RType = Obj->getAnyRelocationType(RENext); if (RType != MachO::GENERIC_RELOC_PAIR) report_fatal_error("Expected GENERIC_RELOC_PAIR after " "GENERIC_RELOC_SECTDIFF."); printRelocationTargetName(Obj, RE, fmt); fmt << "-"; printRelocationTargetName(Obj, RENext, fmt); break; } } if (Arch == Triple::x86 || Arch == Triple::ppc) { switch (Type) { case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: { DataRefImpl RelNext = Rel; Obj->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); // X86 sect diff's must be followed by a relocation of type // GENERIC_RELOC_PAIR. unsigned RType = Obj->getAnyRelocationType(RENext); if (RType != MachO::GENERIC_RELOC_PAIR) report_fatal_error("Expected GENERIC_RELOC_PAIR after " "GENERIC_RELOC_LOCAL_SECTDIFF."); printRelocationTargetName(Obj, RE, fmt); fmt << "-"; printRelocationTargetName(Obj, RENext, fmt); break; } case MachO::GENERIC_RELOC_TLV: { printRelocationTargetName(Obj, RE, fmt); fmt << "@TLV"; if (IsPCRel) fmt << "P"; break; } default: printRelocationTargetName(Obj, RE, fmt); } } else { // ARM-specific relocations switch (Type) { case MachO::ARM_RELOC_HALF: case MachO::ARM_RELOC_HALF_SECTDIFF: { // Half relocations steal a bit from the length field to encode // whether this is an upper16 or a lower16 relocation. bool isUpper = Obj->getAnyRelocationLength(RE) >> 1; if (isUpper) fmt << ":upper16:("; else fmt << ":lower16:("; printRelocationTargetName(Obj, RE, fmt); DataRefImpl RelNext = Rel; Obj->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); // ARM half relocs must be followed by a relocation of type // ARM_RELOC_PAIR. unsigned RType = Obj->getAnyRelocationType(RENext); if (RType != MachO::ARM_RELOC_PAIR) report_fatal_error("Expected ARM_RELOC_PAIR after " "ARM_RELOC_HALF"); // NOTE: The half of the target virtual address is stashed in the // address field of the secondary relocation, but we can't reverse // engineer the constant offset from it without decoding the movw/movt // instruction to find the other half in its immediate field. // ARM_RELOC_HALF_SECTDIFF encodes the second section in the // symbol/section pointer of the follow-on relocation. if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) { fmt << "-"; printRelocationTargetName(Obj, RENext, fmt); } fmt << ")"; break; } default: { printRelocationTargetName(Obj, RE, fmt); } } } } else printRelocationTargetName(Obj, RE, fmt); fmt.flush(); Result.append(fmtbuf.begin(), fmtbuf.end()); return std::error_code(); } static std::error_code getRelocationValueString(const RelocationRef &Rel, SmallVectorImpl<char> &Result) { const ObjectFile *Obj = Rel.getObject(); if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) return getRelocationValueString(ELF, Rel, Result); if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) return getRelocationValueString(COFF, Rel, Result); auto *MachO = cast<MachOObjectFile>(Obj); return getRelocationValueString(MachO, Rel, Result); } /// @brief Indicates whether this relocation should hidden when listing /// relocations, usually because it is the trailing part of a multipart /// relocation that will be printed as part of the leading relocation. static bool getHidden(RelocationRef RelRef) { const ObjectFile *Obj = RelRef.getObject(); auto *MachO = dyn_cast<MachOObjectFile>(Obj); if (!MachO) return false; unsigned Arch = MachO->getArch(); DataRefImpl Rel = RelRef.getRawDataRefImpl(); uint64_t Type = MachO->getRelocationType(Rel); // On arches that use the generic relocations, GENERIC_RELOC_PAIR // is always hidden. if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) { if (Type == MachO::GENERIC_RELOC_PAIR) return true; } else if (Arch == Triple::x86_64) { // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows // an X86_64_RELOC_SUBTRACTOR. if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { DataRefImpl RelPrev = Rel; RelPrev.d.a--; uint64_t PrevType = MachO->getRelocationType(RelPrev); if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) return true; } } return false; } static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) { const Target *TheTarget = getTarget(Obj); // Package up features to be passed to target/subtarget SubtargetFeatures Features = Obj->getFeatures(); if (MAttrs.size()) { for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); } std::unique_ptr<const MCRegisterInfo> MRI( TheTarget->createMCRegInfo(TripleName)); if (!MRI) report_fatal_error("error: no register info for target " + TripleName); // Set up disassembler. std::unique_ptr<const MCAsmInfo> AsmInfo( TheTarget->createMCAsmInfo(*MRI, TripleName)); if (!AsmInfo) report_fatal_error("error: no assembly info for target " + TripleName); std::unique_ptr<const MCSubtargetInfo> STI( TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); if (!STI) report_fatal_error("error: no subtarget info for target " + TripleName); std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); if (!MII) report_fatal_error("error: no instruction info for target " + TripleName); std::unique_ptr<const MCObjectFileInfo> MOFI(new MCObjectFileInfo); MCContext Ctx(AsmInfo.get(), MRI.get(), MOFI.get()); std::unique_ptr<MCDisassembler> DisAsm( TheTarget->createMCDisassembler(*STI, Ctx)); if (!DisAsm) report_fatal_error("error: no disassembler for target " + TripleName); std::unique_ptr<const MCInstrAnalysis> MIA( TheTarget->createMCInstrAnalysis(MII.get())); int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); if (!IP) report_fatal_error("error: no instruction printer for target " + TripleName); IP->setPrintImmHex(PrintImmHex); PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; // Create a mapping, RelocSecs = SectionRelocMap[S], where sections // in RelocSecs contain the relocations for section S. std::error_code EC; std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { section_iterator Sec2 = Section.getRelocatedSection(); if (Sec2 != Obj->section_end()) SectionRelocMap[*Sec2].push_back(Section); } // Create a mapping from virtual address to symbol name. This is used to // pretty print the symbols while disassembling. typedef std::vector<std::pair<uint64_t, StringRef>> SectionSymbolsTy; std::map<SectionRef, SectionSymbolsTy> AllSymbols; for (const SymbolRef &Symbol : Obj->symbols()) { Expected<uint64_t> AddressOrErr = Symbol.getAddress(); error(errorToErrorCode(AddressOrErr.takeError())); uint64_t Address = *AddressOrErr; Expected<StringRef> Name = Symbol.getName(); error(errorToErrorCode(Name.takeError())); if (Name->empty()) continue; Expected<section_iterator> SectionOrErr = Symbol.getSection(); error(errorToErrorCode(SectionOrErr.takeError())); section_iterator SecI = *SectionOrErr; if (SecI == Obj->section_end()) continue; AllSymbols[*SecI].emplace_back(Address, *Name); } // Create a mapping from virtual address to section. std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; for (SectionRef Sec : Obj->sections()) SectionAddresses.emplace_back(Sec.getAddress(), Sec); array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); // Linked executables (.exe and .dll files) typically don't include a real // symbol table but they might contain an export table. if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { for (const auto &ExportEntry : COFFObj->export_directories()) { StringRef Name; error(ExportEntry.getSymbolName(Name)); if (Name.empty()) continue; uint32_t RVA; error(ExportEntry.getExportRVA(RVA)); uint64_t VA = COFFObj->getImageBase() + RVA; auto Sec = std::upper_bound( SectionAddresses.begin(), SectionAddresses.end(), VA, [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) { return LHS < RHS.first; }); if (Sec != SectionAddresses.begin()) --Sec; else Sec = SectionAddresses.end(); if (Sec != SectionAddresses.end()) AllSymbols[Sec->second].emplace_back(VA, Name); } } // Sort all the symbols, this allows us to use a simple binary search to find // a symbol near an address. for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); for (const SectionRef &Section : ToolSectionFilter(*Obj)) { if (!DisassembleAll && (!Section.isText() || Section.isVirtual())) continue; uint64_t SectionAddr = Section.getAddress(); uint64_t SectSize = Section.getSize(); if (!SectSize) continue; // Get the list of all the symbols in this section. SectionSymbolsTy &Symbols = AllSymbols[Section]; std::vector<uint64_t> DataMappingSymsAddr; std::vector<uint64_t> TextMappingSymsAddr; if (Obj->isELF() && Obj->getArch() == Triple::aarch64) { for (const auto &Symb : Symbols) { uint64_t Address = Symb.first; StringRef Name = Symb.second; if (Name.startswith("$d")) DataMappingSymsAddr.push_back(Address - SectionAddr); if (Name.startswith("$x")) TextMappingSymsAddr.push_back(Address - SectionAddr); } } std::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end()); std::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end()); // Make a list of all the relocations for this section. std::vector<RelocationRef> Rels; if (InlineRelocs) { for (const SectionRef &RelocSec : SectionRelocMap[Section]) { for (const RelocationRef &Reloc : RelocSec.relocations()) { Rels.push_back(Reloc); } } } // Sort relocations by address. std::sort(Rels.begin(), Rels.end(), RelocAddressLess); StringRef SegmentName = ""; if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) { DataRefImpl DR = Section.getRawDataRefImpl(); SegmentName = MachO->getSectionFinalSegmentName(DR); } StringRef name; error(Section.getName(name)); outs() << "Disassembly of section "; if (!SegmentName.empty()) outs() << SegmentName << ","; outs() << name << ':'; // If the section has no symbol at the start, just insert a dummy one. if (Symbols.empty() || Symbols[0].first != 0) Symbols.insert(Symbols.begin(), std::make_pair(SectionAddr, name)); SmallString<40> Comments; raw_svector_ostream CommentStream(Comments); StringRef BytesStr; error(Section.getContents(BytesStr)); ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()), BytesStr.size()); uint64_t Size; uint64_t Index; std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin(); std::vector<RelocationRef>::const_iterator rel_end = Rels.end(); // Disassemble symbol by symbol. for (unsigned si = 0, se = Symbols.size(); si != se; ++si) { uint64_t Start = Symbols[si].first - SectionAddr; // The end is either the section end or the beginning of the next // symbol. uint64_t End = (si == se - 1) ? SectSize : Symbols[si + 1].first - SectionAddr; // Don't try to disassemble beyond the end of section contents. if (End > SectSize) End = SectSize; // If this symbol has the same address as the next symbol, then skip it. if (Start >= End) continue; if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { // make size 4 bytes folded End = Start + ((End - Start) & ~0x3ull); Start += 256; // add sizeof(amd_kernel_code_t) // cut trailing zeroes - up to 256 bytes (align) const uint64_t EndAlign = 256; const auto Limit = End - (std::min)(EndAlign, End - Start); while (End > Limit && *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) End -= 4; } outs() << '\n' << Symbols[si].second << ":\n"; #ifndef NDEBUG raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); #else raw_ostream &DebugOut = nulls(); #endif for (Index = Start; Index < End; Index += Size) { MCInst Inst; // AArch64 ELF binaries can interleave data and text in the // same section. We rely on the markers introduced to // understand what we need to dump. if (Obj->isELF() && Obj->getArch() == Triple::aarch64) { uint64_t Stride = 0; auto DAI = std::lower_bound(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end(), Index); if (DAI != DataMappingSymsAddr.end() && *DAI == Index) { // Switch to data. while (Index < End) { outs() << format("%8" PRIx64 ":", SectionAddr + Index); outs() << "\t"; if (Index + 4 <= End) { Stride = 4; dumpBytes(Bytes.slice(Index, 4), outs()); outs() << "\t.word"; } else if (Index + 2 <= End) { Stride = 2; dumpBytes(Bytes.slice(Index, 2), outs()); outs() << "\t.short"; } else { Stride = 1; dumpBytes(Bytes.slice(Index, 1), outs()); outs() << "\t.byte"; } Index += Stride; outs() << "\n"; auto TAI = std::lower_bound(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end(), Index); if (TAI != TextMappingSymsAddr.end() && *TAI == Index) break; } } } if (Index >= End) break; bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut, CommentStream); if (Size == 0) Size = 1; PIP.printInst(*IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), SectionAddr + Index, outs(), "", *STI); outs() << CommentStream.str(); Comments.clear(); // Try to resolve the target of a call, tail call, etc. to a specific // symbol. if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || MIA->isConditionalBranch(Inst))) { uint64_t Target; if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { // In a relocatable object, the target's section must reside in // the same section as the call instruction or it is accessed // through a relocation. // // In a non-relocatable object, the target may be in any section. // // N.B. We don't walk the relocations in the relocatable case yet. auto *TargetSectionSymbols = &Symbols; if (!Obj->isRelocatableObject()) { auto SectionAddress = std::upper_bound( SectionAddresses.begin(), SectionAddresses.end(), Target, [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) { return LHS < RHS.first; }); if (SectionAddress != SectionAddresses.begin()) { --SectionAddress; TargetSectionSymbols = &AllSymbols[SectionAddress->second]; } else { TargetSectionSymbols = nullptr; } } // Find the first symbol in the section whose offset is less than // or equal to the target. if (TargetSectionSymbols) { auto TargetSym = std::upper_bound( TargetSectionSymbols->begin(), TargetSectionSymbols->end(), Target, [](uint64_t LHS, const std::pair<uint64_t, StringRef> &RHS) { return LHS < RHS.first; }); if (TargetSym != TargetSectionSymbols->begin()) { --TargetSym; uint64_t TargetAddress = std::get<0>(*TargetSym); StringRef TargetName = std::get<1>(*TargetSym); outs() << " <" << TargetName; uint64_t Disp = Target - TargetAddress; if (Disp) outs() << "+0x" << utohexstr(Disp); outs() << '>'; } } } } outs() << "\n"; // Print relocation for instruction. while (rel_cur != rel_end) { bool hidden = getHidden(*rel_cur); uint64_t addr = rel_cur->getOffset(); SmallString<16> name; SmallString<32> val; // If this relocation is hidden, skip it. if (hidden) goto skip_print_rel; // Stop when rel_cur's address is past the current instruction. if (addr >= Index + Size) break; rel_cur->getTypeName(name); error(getRelocationValueString(*rel_cur, val)); outs() << format(Fmt.data(), SectionAddr + addr) << name << "\t" << val << "\n"; skip_print_rel: ++rel_cur; } } } } } void llvm::PrintRelocations(const ObjectFile *Obj) { StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; // Regular objdump doesn't print relocations in non-relocatable object // files. if (!Obj->isRelocatableObject()) return; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { if (Section.relocation_begin() == Section.relocation_end()) continue; StringRef secname; error(Section.getName(secname)); outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n"; for (const RelocationRef &Reloc : Section.relocations()) { bool hidden = getHidden(Reloc); uint64_t address = Reloc.getOffset(); SmallString<32> relocname; SmallString<32> valuestr; if (hidden) continue; Reloc.getTypeName(relocname); error(getRelocationValueString(Reloc, valuestr)); outs() << format(Fmt.data(), address) << " " << relocname << " " << valuestr << "\n"; } outs() << "\n"; } } void llvm::PrintSectionHeaders(const ObjectFile *Obj) { outs() << "Sections:\n" "Idx Name Size Address Type\n"; unsigned i = 0; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { StringRef Name; error(Section.getName(Name)); uint64_t Address = Section.getAddress(); uint64_t Size = Section.getSize(); bool Text = Section.isText(); bool Data = Section.isData(); bool BSS = Section.isBSS(); std::string Type = (std::string(Text ? "TEXT " : "") + (Data ? "DATA " : "") + (BSS ? "BSS" : "")); outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i, Name.str().c_str(), Size, Address, Type.c_str()); ++i; } } void llvm::PrintSectionContents(const ObjectFile *Obj) { std::error_code EC; for (const SectionRef &Section : ToolSectionFilter(*Obj)) { StringRef Name; StringRef Contents; error(Section.getName(Name)); uint64_t BaseAddr = Section.getAddress(); uint64_t Size = Section.getSize(); if (!Size) continue; outs() << "Contents of section " << Name << ":\n"; if (Section.isBSS()) { outs() << format("<skipping contents of bss section at [%04" PRIx64 ", %04" PRIx64 ")>\n", BaseAddr, BaseAddr + Size); continue; } error(Section.getContents(Contents)); // Dump out the content as hex and printable ascii characters. for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) { outs() << format(" %04" PRIx64 " ", BaseAddr + addr); // Dump line of hex. for (std::size_t i = 0; i < 16; ++i) { if (i != 0 && i % 4 == 0) outs() << ' '; if (addr + i < end) outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true) << hexdigit(Contents[addr + i] & 0xF, true); else outs() << " "; } // Print ascii. outs() << " "; for (std::size_t i = 0; i < 16 && addr + i < end; ++i) { if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF)) outs() << Contents[addr + i]; else outs() << "."; } outs() << "\n"; } } } void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName, StringRef ArchitectureName) { outs() << "SYMBOL TABLE:\n"; if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) { printCOFFSymbolTable(coff); return; } for (const SymbolRef &Symbol : o->symbols()) { Expected<uint64_t> AddressOrError = Symbol.getAddress(); if (!AddressOrError) report_error(ArchiveName, o->getFileName(), AddressOrError.takeError()); uint64_t Address = *AddressOrError; Expected<SymbolRef::Type> TypeOrError = Symbol.getType(); if (!TypeOrError) report_error(ArchiveName, o->getFileName(), TypeOrError.takeError()); SymbolRef::Type Type = *TypeOrError; uint32_t Flags = Symbol.getFlags(); Expected<section_iterator> SectionOrErr = Symbol.getSection(); error(errorToErrorCode(SectionOrErr.takeError())); section_iterator Section = *SectionOrErr; StringRef Name; if (Type == SymbolRef::ST_Debug && Section != o->section_end()) { Section->getName(Name); } else { Expected<StringRef> NameOrErr = Symbol.getName(); if (!NameOrErr) report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(), ArchitectureName); Name = *NameOrErr; } bool Global = Flags & SymbolRef::SF_Global; bool Weak = Flags & SymbolRef::SF_Weak; bool Absolute = Flags & SymbolRef::SF_Absolute; bool Common = Flags & SymbolRef::SF_Common; bool Hidden = Flags & SymbolRef::SF_Hidden; char GlobLoc = ' '; if (Type != SymbolRef::ST_Unknown) GlobLoc = Global ? 'g' : 'l'; char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) ? 'd' : ' '; char FileFunc = ' '; if (Type == SymbolRef::ST_File) FileFunc = 'f'; else if (Type == SymbolRef::ST_Function) FileFunc = 'F'; const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; outs() << format(Fmt, Address) << " " << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' << (Weak ? 'w' : ' ') // Weak? << ' ' // Constructor. Not supported yet. << ' ' // Warning. Not supported yet. << ' ' // Indirect reference to another symbol. << Debug // Debugging (d) or dynamic (D) symbol. << FileFunc // Name of function (F), file (f) or object (O). << ' '; if (Absolute) { outs() << "*ABS*"; } else if (Common) { outs() << "*COM*"; } else if (Section == o->section_end()) { outs() << "*UND*"; } else { if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(o)) { DataRefImpl DR = Section->getRawDataRefImpl(); StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); outs() << SegmentName << ","; } StringRef SectionName; error(Section->getName(SectionName)); outs() << SectionName; } outs() << '\t'; if (Common || isa<ELFObjectFileBase>(o)) { uint64_t Val = Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); outs() << format("\t %08" PRIx64 " ", Val); } if (Hidden) { outs() << ".hidden "; } outs() << Name << '\n'; } } static void PrintUnwindInfo(const ObjectFile *o) { outs() << "Unwind info:\n\n"; if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) { printCOFFUnwindInfo(coff); } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) printMachOUnwindInfo(MachO); else { // TODO: Extract DWARF dump tool to objdump. errs() << "This operation is only currently supported " "for COFF and MachO object files.\n"; return; } } void llvm::printExportsTrie(const ObjectFile *o) { outs() << "Exports trie:\n"; if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) printMachOExportsTrie(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } void llvm::printRebaseTable(const ObjectFile *o) { outs() << "Rebase table:\n"; if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) printMachORebaseTable(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } void llvm::printBindTable(const ObjectFile *o) { outs() << "Bind table:\n"; if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) printMachOBindTable(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } void llvm::printLazyBindTable(const ObjectFile *o) { outs() << "Lazy bind table:\n"; if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) printMachOLazyBindTable(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } void llvm::printWeakBindTable(const ObjectFile *o) { outs() << "Weak bind table:\n"; if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) printMachOWeakBindTable(MachO); else { errs() << "This operation is only currently supported " "for Mach-O executable files.\n"; return; } } /// Dump the raw contents of the __clangast section so the output can be piped /// into llvm-bcanalyzer. void llvm::printRawClangAST(const ObjectFile *Obj) { if (outs().is_displayed()) { errs() << "The -raw-clang-ast option will dump the raw binary contents of " "the clang ast section.\n" "Please redirect the output to a file or another program such as " "llvm-bcanalyzer.\n"; return; } StringRef ClangASTSectionName("__clangast"); if (isa<COFFObjectFile>(Obj)) { ClangASTSectionName = "clangast"; } Optional<object::SectionRef> ClangASTSection; for (auto Sec : ToolSectionFilter(*Obj)) { StringRef Name; Sec.getName(Name); if (Name == ClangASTSectionName) { ClangASTSection = Sec; break; } } if (!ClangASTSection) return; StringRef ClangASTContents; error(ClangASTSection.getValue().getContents(ClangASTContents)); outs().write(ClangASTContents.data(), ClangASTContents.size()); } static void printFaultMaps(const ObjectFile *Obj) { const char *FaultMapSectionName = nullptr; if (isa<ELFObjectFileBase>(Obj)) { FaultMapSectionName = ".llvm_faultmaps"; } else if (isa<MachOObjectFile>(Obj)) { FaultMapSectionName = "__llvm_faultmaps"; } else { errs() << "This operation is only currently supported " "for ELF and Mach-O executable files.\n"; return; } Optional<object::SectionRef> FaultMapSection; for (auto Sec : ToolSectionFilter(*Obj)) { StringRef Name; Sec.getName(Name); if (Name == FaultMapSectionName) { FaultMapSection = Sec; break; } } outs() << "FaultMap table:\n"; if (!FaultMapSection.hasValue()) { outs() << "<not found>\n"; return; } StringRef FaultMapContents; error(FaultMapSection.getValue().getContents(FaultMapContents)); FaultMapParser FMP(FaultMapContents.bytes_begin(), FaultMapContents.bytes_end()); outs() << FMP; } static void printPrivateFileHeaders(const ObjectFile *o) { if (o->isELF()) printELFFileHeader(o); else if (o->isCOFF()) printCOFFFileHeader(o); else if (o->isMachO()) { printMachOFileHeader(o); printMachOLoadCommands(o); } else report_fatal_error("Invalid/Unsupported object file format"); } static void printFirstPrivateFileHeader(const ObjectFile *o) { if (o->isELF()) printELFFileHeader(o); else if (o->isCOFF()) printCOFFFileHeader(o); else if (o->isMachO()) printMachOFileHeader(o); else report_fatal_error("Invalid/Unsupported object file format"); } static void DumpObject(const ObjectFile *o, const Archive *a = nullptr) { StringRef ArchiveName = a != nullptr ? a->getFileName() : ""; // Avoid other output when using a raw option. if (!RawClangAST) { outs() << '\n'; if (a) outs() << a->getFileName() << "(" << o->getFileName() << ")"; else outs() << o->getFileName(); outs() << ":\tfile format " << o->getFileFormatName() << "\n\n"; } if (Disassemble) DisassembleObject(o, Relocations); if (Relocations && !Disassemble) PrintRelocations(o); if (SectionHeaders) PrintSectionHeaders(o); if (SectionContents) PrintSectionContents(o); if (SymbolTable) PrintSymbolTable(o, ArchiveName); if (UnwindInfo) PrintUnwindInfo(o); if (PrivateHeaders) printPrivateFileHeaders(o); if (FirstPrivateHeader) printFirstPrivateFileHeader(o); if (ExportsTrie) printExportsTrie(o); if (Rebase) printRebaseTable(o); if (Bind) printBindTable(o); if (LazyBind) printLazyBindTable(o); if (WeakBind) printWeakBindTable(o); if (RawClangAST) printRawClangAST(o); if (PrintFaultMaps) printFaultMaps(o); if (DwarfDumpType != DIDT_Null) { std::unique_ptr<DIContext> DICtx(new DWARFContextInMemory(*o)); // Dump the complete DWARF structure. DICtx->dump(outs(), DwarfDumpType, true /* DumpEH */); } } /// @brief Dump each object file in \a a; static void DumpArchive(const Archive *a) { Error Err; for (auto &C : a->children(Err)) { Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); if (!ChildOrErr) { if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) report_error(a->getFileName(), C, std::move(E)); continue; } if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) DumpObject(o, a); else report_error(a->getFileName(), object_error::invalid_file_type); } if (Err) report_error(a->getFileName(), std::move(Err)); } /// @brief Open file and figure out how to dump it. static void DumpInput(StringRef file) { // If we are using the Mach-O specific object file parser, then let it parse // the file and process the command line options. So the -arch flags can // be used to select specific slices, etc. if (MachOOpt) { ParseInputMachO(file); return; } // Attempt to open the binary. Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file); if (!BinaryOrErr) report_error(file, BinaryOrErr.takeError()); Binary &Binary = *BinaryOrErr.get().getBinary(); if (Archive *a = dyn_cast<Archive>(&Binary)) DumpArchive(a); else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary)) DumpObject(o); else report_error(file, object_error::invalid_file_type); } int main(int argc, char **argv) { // Print a stack trace if we signal out. sys::PrintStackTraceOnErrorSignal(argv[0]); PrettyStackTraceProgram X(argc, argv); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. // Initialize targets and assembly printers/parsers. llvm::InitializeAllTargetInfos(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllDisassemblers(); // Register the target printer for --version. cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); TripleName = Triple::normalize(TripleName); ToolName = argv[0]; // Defaults to a.out if no filenames specified. if (InputFilenames.size() == 0) InputFilenames.push_back("a.out"); if (DisassembleAll) Disassemble = true; if (!Disassemble && !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && !UnwindInfo && !PrivateHeaders && !FirstPrivateHeader && !ExportsTrie && !Rebase && !Bind && !LazyBind && !WeakBind && !RawClangAST && !(UniversalHeaders && MachOOpt) && !(ArchiveHeaders && MachOOpt) && !(IndirectSymbols && MachOOpt) && !(DataInCode && MachOOpt) && !(LinkOptHints && MachOOpt) && !(InfoPlist && MachOOpt) && !(DylibsUsed && MachOOpt) && !(DylibId && MachOOpt) && !(ObjcMetaData && MachOOpt) && !(FilterSections.size() != 0 && MachOOpt) && !PrintFaultMaps && DwarfDumpType == DIDT_Null) { cl::PrintHelpMessage(); return 2; } std::for_each(InputFilenames.begin(), InputFilenames.end(), DumpInput); return EXIT_SUCCESS; }