//===-- ToolRunner.cpp ----------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the interfaces described in the ToolRunner.h file. // //===----------------------------------------------------------------------===// #include "ToolRunner.h" #include "llvm/Config/config.h" // for HAVE_LINK_R #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/FileUtilities.h" #include "llvm/Support/Program.h" #include "llvm/Support/raw_ostream.h" #include <fstream> #include <sstream> #include <utility> using namespace llvm; #define DEBUG_TYPE "toolrunner" namespace llvm { cl::opt<bool> SaveTemps("save-temps", cl::init(false), cl::desc("Save temporary files")); } namespace { cl::opt<std::string> RemoteClient("remote-client", cl::desc("Remote execution client (rsh/ssh)")); cl::opt<std::string> RemoteHost("remote-host", cl::desc("Remote execution (rsh/ssh) host")); cl::opt<std::string> RemotePort("remote-port", cl::desc("Remote execution (rsh/ssh) port")); cl::opt<std::string> RemoteUser("remote-user", cl::desc("Remote execution (rsh/ssh) user id")); cl::opt<std::string> RemoteExtra("remote-extra-options", cl::desc("Remote execution (rsh/ssh) extra options")); } /// RunProgramWithTimeout - This function provides an alternate interface /// to the sys::Program::ExecuteAndWait interface. /// @see sys::Program::ExecuteAndWait static int RunProgramWithTimeout(StringRef ProgramPath, const char **Args, StringRef StdInFile, StringRef StdOutFile, StringRef StdErrFile, unsigned NumSeconds = 0, unsigned MemoryLimit = 0, std::string *ErrMsg = nullptr) { const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile }; return sys::ExecuteAndWait(ProgramPath, Args, nullptr, Redirects, NumSeconds, MemoryLimit, ErrMsg); } /// RunProgramRemotelyWithTimeout - This function runs the given program /// remotely using the given remote client and the sys::Program::ExecuteAndWait. /// Returns the remote program exit code or reports a remote client error if it /// fails. Remote client is required to return 255 if it failed or program exit /// code otherwise. /// @see sys::Program::ExecuteAndWait static int RunProgramRemotelyWithTimeout(StringRef RemoteClientPath, const char **Args, StringRef StdInFile, StringRef StdOutFile, StringRef StdErrFile, unsigned NumSeconds = 0, unsigned MemoryLimit = 0) { const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile }; // Run the program remotely with the remote client int ReturnCode = sys::ExecuteAndWait(RemoteClientPath, Args, nullptr, Redirects, NumSeconds, MemoryLimit); // Has the remote client fail? if (255 == ReturnCode) { std::ostringstream OS; OS << "\nError running remote client:\n "; for (const char **Arg = Args; *Arg; ++Arg) OS << " " << *Arg; OS << "\n"; // The error message is in the output file, let's print it out from there. std::string StdOutFileName = StdOutFile.str(); std::ifstream ErrorFile(StdOutFileName.c_str()); if (ErrorFile) { std::copy(std::istreambuf_iterator<char>(ErrorFile), std::istreambuf_iterator<char>(), std::ostreambuf_iterator<char>(OS)); ErrorFile.close(); } errs() << OS.str(); } return ReturnCode; } static std::string ProcessFailure(StringRef ProgPath, const char** Args, unsigned Timeout = 0, unsigned MemoryLimit = 0) { std::ostringstream OS; OS << "\nError running tool:\n "; for (const char **Arg = Args; *Arg; ++Arg) OS << " " << *Arg; OS << "\n"; // Rerun the compiler, capturing any error messages to print them. SmallString<128> ErrorFilename; std::error_code EC = sys::fs::createTemporaryFile( "bugpoint.program_error_messages", "", ErrorFilename); if (EC) { errs() << "Error making unique filename: " << EC.message() << "\n"; exit(1); } RunProgramWithTimeout(ProgPath, Args, "", ErrorFilename.str(), ErrorFilename.str(), Timeout, MemoryLimit); // FIXME: check return code ? // Print out the error messages generated by CC if possible... std::ifstream ErrorFile(ErrorFilename.c_str()); if (ErrorFile) { std::copy(std::istreambuf_iterator<char>(ErrorFile), std::istreambuf_iterator<char>(), std::ostreambuf_iterator<char>(OS)); ErrorFile.close(); } sys::fs::remove(ErrorFilename.c_str()); return OS.str(); } //===---------------------------------------------------------------------===// // LLI Implementation of AbstractIntepreter interface // namespace { class LLI : public AbstractInterpreter { std::string LLIPath; // The path to the LLI executable std::vector<std::string> ToolArgs; // Args to pass to LLI public: LLI(const std::string &Path, const std::vector<std::string> *Args) : LLIPath(Path) { ToolArgs.clear (); if (Args) { ToolArgs = *Args; } } int ExecuteProgram(const std::string &Bitcode, const std::vector<std::string> &Args, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &CCArgs, const std::vector<std::string> &SharedLibs = std::vector<std::string>(), unsigned Timeout = 0, unsigned MemoryLimit = 0) override; }; } int LLI::ExecuteProgram(const std::string &Bitcode, const std::vector<std::string> &Args, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &CCArgs, const std::vector<std::string> &SharedLibs, unsigned Timeout, unsigned MemoryLimit) { std::vector<const char*> LLIArgs; LLIArgs.push_back(LLIPath.c_str()); LLIArgs.push_back("-force-interpreter=true"); for (std::vector<std::string>::const_iterator i = SharedLibs.begin(), e = SharedLibs.end(); i != e; ++i) { LLIArgs.push_back("-load"); LLIArgs.push_back((*i).c_str()); } // Add any extra LLI args. for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i) LLIArgs.push_back(ToolArgs[i].c_str()); LLIArgs.push_back(Bitcode.c_str()); // Add optional parameters to the running program from Argv for (unsigned i=0, e = Args.size(); i != e; ++i) LLIArgs.push_back(Args[i].c_str()); LLIArgs.push_back(nullptr); outs() << "<lli>"; outs().flush(); DEBUG(errs() << "\nAbout to run:\t"; for (unsigned i=0, e = LLIArgs.size()-1; i != e; ++i) errs() << " " << LLIArgs[i]; errs() << "\n"; ); return RunProgramWithTimeout(LLIPath, &LLIArgs[0], InputFile, OutputFile, OutputFile, Timeout, MemoryLimit, Error); } void AbstractInterpreter::anchor() { } #if defined(LLVM_ON_UNIX) const char EXESuffix[] = ""; #elif defined (LLVM_ON_WIN32) const char EXESuffix[] = "exe"; #endif /// Prepend the path to the program being executed /// to \p ExeName, given the value of argv[0] and the address of main() /// itself. This allows us to find another LLVM tool if it is built in the same /// directory. An empty string is returned on error; note that this function /// just mainpulates the path and doesn't check for executability. /// @brief Find a named executable. static std::string PrependMainExecutablePath(const std::string &ExeName, const char *Argv0, void *MainAddr) { // Check the directory that the calling program is in. We can do // this if ProgramPath contains at least one / character, indicating that it // is a relative path to the executable itself. std::string Main = sys::fs::getMainExecutable(Argv0, MainAddr); StringRef Result = sys::path::parent_path(Main); if (!Result.empty()) { SmallString<128> Storage = Result; sys::path::append(Storage, ExeName); sys::path::replace_extension(Storage, EXESuffix); return Storage.str(); } return Result.str(); } // LLI create method - Try to find the LLI executable AbstractInterpreter *AbstractInterpreter::createLLI(const char *Argv0, std::string &Message, const std::vector<std::string> *ToolArgs) { std::string LLIPath = PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createLLI); if (!LLIPath.empty()) { Message = "Found lli: " + LLIPath + "\n"; return new LLI(LLIPath, ToolArgs); } Message = "Cannot find `lli' in executable directory!\n"; return nullptr; } //===---------------------------------------------------------------------===// // Custom compiler command implementation of AbstractIntepreter interface // // Allows using a custom command for compiling the bitcode, thus allows, for // example, to compile a bitcode fragment without linking or executing, then // using a custom wrapper script to check for compiler errors. namespace { class CustomCompiler : public AbstractInterpreter { std::string CompilerCommand; std::vector<std::string> CompilerArgs; public: CustomCompiler(const std::string &CompilerCmd, std::vector<std::string> CompArgs) : CompilerCommand(CompilerCmd), CompilerArgs(std::move(CompArgs)) {} void compileProgram(const std::string &Bitcode, std::string *Error, unsigned Timeout = 0, unsigned MemoryLimit = 0) override; int ExecuteProgram(const std::string &Bitcode, const std::vector<std::string> &Args, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &CCArgs = std::vector<std::string>(), const std::vector<std::string> &SharedLibs = std::vector<std::string>(), unsigned Timeout = 0, unsigned MemoryLimit = 0) override { *Error = "Execution not supported with -compile-custom"; return -1; } }; } void CustomCompiler::compileProgram(const std::string &Bitcode, std::string *Error, unsigned Timeout, unsigned MemoryLimit) { std::vector<const char*> ProgramArgs; ProgramArgs.push_back(CompilerCommand.c_str()); for (std::size_t i = 0; i < CompilerArgs.size(); ++i) ProgramArgs.push_back(CompilerArgs.at(i).c_str()); ProgramArgs.push_back(Bitcode.c_str()); ProgramArgs.push_back(nullptr); // Add optional parameters to the running program from Argv for (unsigned i = 0, e = CompilerArgs.size(); i != e; ++i) ProgramArgs.push_back(CompilerArgs[i].c_str()); if (RunProgramWithTimeout(CompilerCommand, &ProgramArgs[0], "", "", "", Timeout, MemoryLimit, Error)) *Error = ProcessFailure(CompilerCommand, &ProgramArgs[0], Timeout, MemoryLimit); } //===---------------------------------------------------------------------===// // Custom execution command implementation of AbstractIntepreter interface // // Allows using a custom command for executing the bitcode, thus allows, // for example, to invoke a cross compiler for code generation followed by // a simulator that executes the generated binary. namespace { class CustomExecutor : public AbstractInterpreter { std::string ExecutionCommand; std::vector<std::string> ExecutorArgs; public: CustomExecutor(const std::string &ExecutionCmd, std::vector<std::string> ExecArgs) : ExecutionCommand(ExecutionCmd), ExecutorArgs(std::move(ExecArgs)) {} int ExecuteProgram(const std::string &Bitcode, const std::vector<std::string> &Args, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &CCArgs, const std::vector<std::string> &SharedLibs = std::vector<std::string>(), unsigned Timeout = 0, unsigned MemoryLimit = 0) override; }; } int CustomExecutor::ExecuteProgram(const std::string &Bitcode, const std::vector<std::string> &Args, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &CCArgs, const std::vector<std::string> &SharedLibs, unsigned Timeout, unsigned MemoryLimit) { std::vector<const char*> ProgramArgs; ProgramArgs.push_back(ExecutionCommand.c_str()); for (std::size_t i = 0; i < ExecutorArgs.size(); ++i) ProgramArgs.push_back(ExecutorArgs.at(i).c_str()); ProgramArgs.push_back(Bitcode.c_str()); ProgramArgs.push_back(nullptr); // Add optional parameters to the running program from Argv for (unsigned i = 0, e = Args.size(); i != e; ++i) ProgramArgs.push_back(Args[i].c_str()); return RunProgramWithTimeout( ExecutionCommand, &ProgramArgs[0], InputFile, OutputFile, OutputFile, Timeout, MemoryLimit, Error); } // Tokenize the CommandLine to the command and the args to allow // defining a full command line as the command instead of just the // executed program. We cannot just pass the whole string after the command // as a single argument because then program sees only a single // command line argument (with spaces in it: "foo bar" instead // of "foo" and "bar"). // // code borrowed from: // http://oopweb.com/CPP/Documents/CPPHOWTO/Volume/C++Programming-HOWTO-7.html static void lexCommand(std::string &Message, const std::string &CommandLine, std::string &CmdPath, std::vector<std::string> &Args) { std::string Command = ""; std::string delimiters = " "; std::string::size_type lastPos = CommandLine.find_first_not_of(delimiters, 0); std::string::size_type pos = CommandLine.find_first_of(delimiters, lastPos); while (std::string::npos != pos || std::string::npos != lastPos) { std::string token = CommandLine.substr(lastPos, pos - lastPos); if (Command == "") Command = token; else Args.push_back(token); // Skip delimiters. Note the "not_of" lastPos = CommandLine.find_first_not_of(delimiters, pos); // Find next "non-delimiter" pos = CommandLine.find_first_of(delimiters, lastPos); } auto Path = sys::findProgramByName(Command); if (!Path) { Message = std::string("Cannot find '") + Command + "' in PATH: " + Path.getError().message() + "\n"; return; } CmdPath = *Path; Message = "Found command in: " + CmdPath + "\n"; } // Custom execution environment create method, takes the execution command // as arguments AbstractInterpreter *AbstractInterpreter::createCustomCompiler( std::string &Message, const std::string &CompileCommandLine) { std::string CmdPath; std::vector<std::string> Args; lexCommand(Message, CompileCommandLine, CmdPath, Args); if (CmdPath.empty()) return nullptr; return new CustomCompiler(CmdPath, Args); } // Custom execution environment create method, takes the execution command // as arguments AbstractInterpreter *AbstractInterpreter::createCustomExecutor( std::string &Message, const std::string &ExecCommandLine) { std::string CmdPath; std::vector<std::string> Args; lexCommand(Message, ExecCommandLine, CmdPath, Args); if (CmdPath.empty()) return nullptr; return new CustomExecutor(CmdPath, Args); } //===----------------------------------------------------------------------===// // LLC Implementation of AbstractIntepreter interface // CC::FileType LLC::OutputCode(const std::string &Bitcode, std::string &OutputAsmFile, std::string &Error, unsigned Timeout, unsigned MemoryLimit) { const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s"); SmallString<128> UniqueFile; std::error_code EC = sys::fs::createUniqueFile(Bitcode + "-%%%%%%%" + Suffix, UniqueFile); if (EC) { errs() << "Error making unique filename: " << EC.message() << "\n"; exit(1); } OutputAsmFile = UniqueFile.str(); std::vector<const char *> LLCArgs; LLCArgs.push_back(LLCPath.c_str()); // Add any extra LLC args. for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i) LLCArgs.push_back(ToolArgs[i].c_str()); LLCArgs.push_back("-o"); LLCArgs.push_back(OutputAsmFile.c_str()); // Output to the Asm file LLCArgs.push_back(Bitcode.c_str()); // This is the input bitcode if (UseIntegratedAssembler) LLCArgs.push_back("-filetype=obj"); LLCArgs.push_back (nullptr); outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>"); outs().flush(); DEBUG(errs() << "\nAbout to run:\t"; for (unsigned i = 0, e = LLCArgs.size()-1; i != e; ++i) errs() << " " << LLCArgs[i]; errs() << "\n"; ); if (RunProgramWithTimeout(LLCPath, &LLCArgs[0], "", "", "", Timeout, MemoryLimit)) Error = ProcessFailure(LLCPath, &LLCArgs[0], Timeout, MemoryLimit); return UseIntegratedAssembler ? CC::ObjectFile : CC::AsmFile; } void LLC::compileProgram(const std::string &Bitcode, std::string *Error, unsigned Timeout, unsigned MemoryLimit) { std::string OutputAsmFile; OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, MemoryLimit); sys::fs::remove(OutputAsmFile); } int LLC::ExecuteProgram(const std::string &Bitcode, const std::vector<std::string> &Args, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &ArgsForCC, const std::vector<std::string> &SharedLibs, unsigned Timeout, unsigned MemoryLimit) { std::string OutputAsmFile; CC::FileType FileKind = OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, MemoryLimit); FileRemover OutFileRemover(OutputAsmFile, !SaveTemps); std::vector<std::string> CCArgs(ArgsForCC); CCArgs.insert(CCArgs.end(), SharedLibs.begin(), SharedLibs.end()); // Assuming LLC worked, compile the result with CC and run it. return cc->ExecuteProgram(OutputAsmFile, Args, FileKind, InputFile, OutputFile, Error, CCArgs, Timeout, MemoryLimit); } /// createLLC - Try to find the LLC executable /// LLC *AbstractInterpreter::createLLC(const char *Argv0, std::string &Message, const std::string &CCBinary, const std::vector<std::string> *Args, const std::vector<std::string> *CCArgs, bool UseIntegratedAssembler) { std::string LLCPath = PrependMainExecutablePath("llc", Argv0, (void *)(intptr_t) & createLLC); if (LLCPath.empty()) { Message = "Cannot find `llc' in executable directory!\n"; return nullptr; } CC *cc = CC::create(Message, CCBinary, CCArgs); if (!cc) { errs() << Message << "\n"; exit(1); } Message = "Found llc: " + LLCPath + "\n"; return new LLC(LLCPath, cc, Args, UseIntegratedAssembler); } //===---------------------------------------------------------------------===// // JIT Implementation of AbstractIntepreter interface // namespace { class JIT : public AbstractInterpreter { std::string LLIPath; // The path to the LLI executable std::vector<std::string> ToolArgs; // Args to pass to LLI public: JIT(const std::string &Path, const std::vector<std::string> *Args) : LLIPath(Path) { ToolArgs.clear (); if (Args) { ToolArgs = *Args; } } int ExecuteProgram(const std::string &Bitcode, const std::vector<std::string> &Args, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &CCArgs = std::vector<std::string>(), const std::vector<std::string> &SharedLibs = std::vector<std::string>(), unsigned Timeout = 0, unsigned MemoryLimit = 0) override; }; } int JIT::ExecuteProgram(const std::string &Bitcode, const std::vector<std::string> &Args, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &CCArgs, const std::vector<std::string> &SharedLibs, unsigned Timeout, unsigned MemoryLimit) { // Construct a vector of parameters, incorporating those from the command-line std::vector<const char*> JITArgs; JITArgs.push_back(LLIPath.c_str()); JITArgs.push_back("-force-interpreter=false"); // Add any extra LLI args. for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i) JITArgs.push_back(ToolArgs[i].c_str()); for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) { JITArgs.push_back("-load"); JITArgs.push_back(SharedLibs[i].c_str()); } JITArgs.push_back(Bitcode.c_str()); // Add optional parameters to the running program from Argv for (unsigned i=0, e = Args.size(); i != e; ++i) JITArgs.push_back(Args[i].c_str()); JITArgs.push_back(nullptr); outs() << "<jit>"; outs().flush(); DEBUG(errs() << "\nAbout to run:\t"; for (unsigned i=0, e = JITArgs.size()-1; i != e; ++i) errs() << " " << JITArgs[i]; errs() << "\n"; ); DEBUG(errs() << "\nSending output to " << OutputFile << "\n"); return RunProgramWithTimeout(LLIPath, &JITArgs[0], InputFile, OutputFile, OutputFile, Timeout, MemoryLimit, Error); } /// createJIT - Try to find the LLI executable /// AbstractInterpreter *AbstractInterpreter::createJIT(const char *Argv0, std::string &Message, const std::vector<std::string> *Args) { std::string LLIPath = PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createJIT); if (!LLIPath.empty()) { Message = "Found lli: " + LLIPath + "\n"; return new JIT(LLIPath, Args); } Message = "Cannot find `lli' in executable directory!\n"; return nullptr; } //===---------------------------------------------------------------------===// // CC abstraction // static bool IsARMArchitecture(std::vector<const char*> Args) { for (std::vector<const char*>::const_iterator I = Args.begin(), E = Args.end(); I != E; ++I) { if (StringRef(*I).equals_lower("-arch")) { ++I; if (I != E && StringRef(*I).startswith_lower("arm")) return true; } } return false; } int CC::ExecuteProgram(const std::string &ProgramFile, const std::vector<std::string> &Args, FileType fileType, const std::string &InputFile, const std::string &OutputFile, std::string *Error, const std::vector<std::string> &ArgsForCC, unsigned Timeout, unsigned MemoryLimit) { std::vector<const char*> CCArgs; CCArgs.push_back(CCPath.c_str()); if (TargetTriple.getArch() == Triple::x86) CCArgs.push_back("-m32"); for (std::vector<std::string>::const_iterator I = ccArgs.begin(), E = ccArgs.end(); I != E; ++I) CCArgs.push_back(I->c_str()); // Specify -x explicitly in case the extension is wonky if (fileType != ObjectFile) { CCArgs.push_back("-x"); if (fileType == CFile) { CCArgs.push_back("c"); CCArgs.push_back("-fno-strict-aliasing"); } else { CCArgs.push_back("assembler"); // For ARM architectures we don't want this flag. bugpoint isn't // explicitly told what architecture it is working on, so we get // it from cc flags if (TargetTriple.isOSDarwin() && !IsARMArchitecture(CCArgs)) CCArgs.push_back("-force_cpusubtype_ALL"); } } CCArgs.push_back(ProgramFile.c_str()); // Specify the input filename. CCArgs.push_back("-x"); CCArgs.push_back("none"); CCArgs.push_back("-o"); SmallString<128> OutputBinary; std::error_code EC = sys::fs::createUniqueFile(ProgramFile + "-%%%%%%%.cc.exe", OutputBinary); if (EC) { errs() << "Error making unique filename: " << EC.message() << "\n"; exit(1); } CCArgs.push_back(OutputBinary.c_str()); // Output to the right file... // Add any arguments intended for CC. We locate them here because this is // most likely -L and -l options that need to come before other libraries but // after the source. Other options won't be sensitive to placement on the // command line, so this should be safe. for (unsigned i = 0, e = ArgsForCC.size(); i != e; ++i) CCArgs.push_back(ArgsForCC[i].c_str()); CCArgs.push_back("-lm"); // Hard-code the math library... CCArgs.push_back("-O2"); // Optimize the program a bit... #if defined (HAVE_LINK_R) CCArgs.push_back("-Wl,-R."); // Search this dir for .so files #endif if (TargetTriple.getArch() == Triple::sparc) CCArgs.push_back("-mcpu=v9"); CCArgs.push_back(nullptr); // NULL terminator outs() << "<CC>"; outs().flush(); DEBUG(errs() << "\nAbout to run:\t"; for (unsigned i = 0, e = CCArgs.size()-1; i != e; ++i) errs() << " " << CCArgs[i]; errs() << "\n"; ); if (RunProgramWithTimeout(CCPath, &CCArgs[0], "", "", "")) { *Error = ProcessFailure(CCPath, &CCArgs[0]); return -1; } std::vector<const char*> ProgramArgs; // Declared here so that the destructor only runs after // ProgramArgs is used. std::string Exec; if (RemoteClientPath.empty()) ProgramArgs.push_back(OutputBinary.c_str()); else { ProgramArgs.push_back(RemoteClientPath.c_str()); ProgramArgs.push_back(RemoteHost.c_str()); if (!RemoteUser.empty()) { ProgramArgs.push_back("-l"); ProgramArgs.push_back(RemoteUser.c_str()); } if (!RemotePort.empty()) { ProgramArgs.push_back("-p"); ProgramArgs.push_back(RemotePort.c_str()); } if (!RemoteExtra.empty()) { ProgramArgs.push_back(RemoteExtra.c_str()); } // Full path to the binary. We need to cd to the exec directory because // there is a dylib there that the exec expects to find in the CWD char* env_pwd = getenv("PWD"); Exec = "cd "; Exec += env_pwd; Exec += "; ./"; Exec += OutputBinary.c_str(); ProgramArgs.push_back(Exec.c_str()); } // Add optional parameters to the running program from Argv for (unsigned i = 0, e = Args.size(); i != e; ++i) ProgramArgs.push_back(Args[i].c_str()); ProgramArgs.push_back(nullptr); // NULL terminator // Now that we have a binary, run it! outs() << "<program>"; outs().flush(); DEBUG(errs() << "\nAbout to run:\t"; for (unsigned i = 0, e = ProgramArgs.size()-1; i != e; ++i) errs() << " " << ProgramArgs[i]; errs() << "\n"; ); FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps); if (RemoteClientPath.empty()) { DEBUG(errs() << "<run locally>"); int ExitCode = RunProgramWithTimeout(OutputBinary.str(), &ProgramArgs[0], InputFile, OutputFile, OutputFile, Timeout, MemoryLimit, Error); // Treat a signal (usually SIGSEGV) or timeout as part of the program output // so that crash-causing miscompilation is handled seamlessly. if (ExitCode < -1) { std::ofstream outFile(OutputFile.c_str(), std::ios_base::app); outFile << *Error << '\n'; outFile.close(); Error->clear(); } return ExitCode; } else { outs() << "<run remotely>"; outs().flush(); return RunProgramRemotelyWithTimeout(RemoteClientPath, &ProgramArgs[0], InputFile, OutputFile, OutputFile, Timeout, MemoryLimit); } } int CC::MakeSharedObject(const std::string &InputFile, FileType fileType, std::string &OutputFile, const std::vector<std::string> &ArgsForCC, std::string &Error) { SmallString<128> UniqueFilename; std::error_code EC = sys::fs::createUniqueFile( InputFile + "-%%%%%%%" + LTDL_SHLIB_EXT, UniqueFilename); if (EC) { errs() << "Error making unique filename: " << EC.message() << "\n"; exit(1); } OutputFile = UniqueFilename.str(); std::vector<const char*> CCArgs; CCArgs.push_back(CCPath.c_str()); if (TargetTriple.getArch() == Triple::x86) CCArgs.push_back("-m32"); for (std::vector<std::string>::const_iterator I = ccArgs.begin(), E = ccArgs.end(); I != E; ++I) CCArgs.push_back(I->c_str()); // Compile the C/asm file into a shared object if (fileType != ObjectFile) { CCArgs.push_back("-x"); CCArgs.push_back(fileType == AsmFile ? "assembler" : "c"); } CCArgs.push_back("-fno-strict-aliasing"); CCArgs.push_back(InputFile.c_str()); // Specify the input filename. CCArgs.push_back("-x"); CCArgs.push_back("none"); if (TargetTriple.getArch() == Triple::sparc) CCArgs.push_back("-G"); // Compile a shared library, `-G' for Sparc else if (TargetTriple.isOSDarwin()) { // link all source files into a single module in data segment, rather than // generating blocks. dynamic_lookup requires that you set // MACOSX_DEPLOYMENT_TARGET=10.3 in your env. FIXME: it would be better for // bugpoint to just pass that in the environment of CC. CCArgs.push_back("-single_module"); CCArgs.push_back("-dynamiclib"); // `-dynamiclib' for MacOS X/PowerPC CCArgs.push_back("-undefined"); CCArgs.push_back("dynamic_lookup"); } else CCArgs.push_back("-shared"); // `-shared' for Linux/X86, maybe others if (TargetTriple.getArch() == Triple::x86_64) CCArgs.push_back("-fPIC"); // Requires shared objs to contain PIC if (TargetTriple.getArch() == Triple::sparc) CCArgs.push_back("-mcpu=v9"); CCArgs.push_back("-o"); CCArgs.push_back(OutputFile.c_str()); // Output to the right filename. CCArgs.push_back("-O2"); // Optimize the program a bit. // Add any arguments intended for CC. We locate them here because this is // most likely -L and -l options that need to come before other libraries but // after the source. Other options won't be sensitive to placement on the // command line, so this should be safe. for (unsigned i = 0, e = ArgsForCC.size(); i != e; ++i) CCArgs.push_back(ArgsForCC[i].c_str()); CCArgs.push_back(nullptr); // NULL terminator outs() << "<CC>"; outs().flush(); DEBUG(errs() << "\nAbout to run:\t"; for (unsigned i = 0, e = CCArgs.size()-1; i != e; ++i) errs() << " " << CCArgs[i]; errs() << "\n"; ); if (RunProgramWithTimeout(CCPath, &CCArgs[0], "", "", "")) { Error = ProcessFailure(CCPath, &CCArgs[0]); return 1; } return 0; } /// create - Try to find the CC executable /// CC *CC::create(std::string &Message, const std::string &CCBinary, const std::vector<std::string> *Args) { auto CCPath = sys::findProgramByName(CCBinary); if (!CCPath) { Message = "Cannot find `" + CCBinary + "' in PATH: " + CCPath.getError().message() + "\n"; return nullptr; } std::string RemoteClientPath; if (!RemoteClient.empty()) { auto Path = sys::findProgramByName(RemoteClient); if (!Path) { Message = "Cannot find `" + RemoteClient + "' in PATH: " + Path.getError().message() + "\n"; return nullptr; } RemoteClientPath = *Path; } Message = "Found CC: " + *CCPath + "\n"; return new CC(*CCPath, RemoteClientPath, Args); }